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Abstract

A quenched limit theorem for coalescents in fixed pedigrees is proved. We in-
vestigate a Cannings model with Mendelian randomness. We consider panmictic
populations with a fixed number of diploid individuals. We show that, under certain
assumptions about the pair and triple coalescence probabilities, the laws of coa-
lescents conditioned on the random pedigree converge stochastically to the law of
the Kingman’s n-coalescent. This result is additionally verified by computer simu-
lations. Further experiments are conducted to investigate whether similar results
might hold for more complex family models and populations of varying size.

German abstract

Wir untersuchen ein Cannings Modell mit Mendel’scher Vererbung, und betrachten
panmiktische Populationen mit einer festen Anzahl von diploiden Individuen. Wir
zeigen, dass Verteilungen von Koaleszenten, bedingt auf eine zufällige Umgebung,
stochastisch gegen die Verteilung des Kingman-Koaleszenten konvergieren. Wir
verifizieren unsere theoretischen Erkenntnisse mit Hilfe von Computersimulationen.
Darüberhinaus untersuchen wir experimentell Modelle mit komplexeren Familien-
strukturen und variierenden Populationsgrößen.

Eigenständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit,
die dem Wortlaut oder dem Sinn nach anderen Werken (dazu zählen auch Inter-
netquellen) entnommen sind, wurden unter Angabe der Quelle kenntlich gemacht.
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1. Introduction

1.1. Background

Kingman’s coalescent is a basic stochastic model that arises in population genetics.
It can be used to model gene genealogies for a single locus, under the assumption
that there is no mutation, no recombination, and that the genetic variation does not
affect the fitness of individuals.

Kingman’s coalescent can be obtained from the Wright-Fisher model [2]. For
each natural number g ∈ N0, consider disjoint generations with N haploid individu-
als. Suppose that each individual from generation g chooses a parent from genera-
tion g+1 uniformly and independently. Now we can select n distinct individuals from
the generation g = 0, assign an index i ∈ {1, . . . , n} to each chosen individual, and
track their ancestral lineages back into the past. Two lineages coalesce as soon as
they hit the same individual. This process continues until all n lineages coalesce
into a single lineage, that is, until the most recent common ancestor (MRCA) of the
sample of n individuals is found. Figure 1.1 illustrates this construction.

The assignment of a predecessor from generation g to each index i from the set
{1, . . . , n} induces a partition of this set. Thus, we obtain a time-discrete partition-
valued process. Accelerating the time by factor N yields a process that converges
to a time-continuous partition-valued Markov chain, as N tends to infinity. This
time-continuous Markov chain is the Kingman’s n-coalescent. It simply starts with
the finest possible partition, and then merges each pair of active lineages with rate
1. Figure 1.2 shows a realization of this process.

Figure 1.1.: Two coalescing lin-
eages for sample size n = 2.

10987654321

t

Figure 1.2.: A realization of Kingman’s coalescent for
sample size n = 10.
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1. Introduction

1.2. Motivation

The model in the previous section is easy to formulate, and has a nice and ele-
gant proof. However, real world applications where the Kingman’s coalescent is
used as a model can have seemingly vastly different assumptions. For example,
Wakeley et al. considered gene genealogies in fixed pedigrees with diploid indi-
viduals [12]. All ancestral relationships were known and fixed. The only thing that
was unknown (and thus modeled by a random variable), were the outcomes of the
Mendelian inheritance experiments. It was known who the parents are, but it was
not known which versions of chromosomes a child inherited from his/her parents.
Thus, the assumptions in the application (fixed pedigree, Mendelian inheritance as
the only source of randomness) are quite different from the assumptions used in
the derivation of the Kingman’s coalescent (random pedigree, no Mendelian ran-
domness). Therefore, one could rightly doubt whether Kingman’s coalescent is the
most appropriate model in this particular case.

The following example shows that these doubts are not completely unfounded.
Consider once again the standard Wright-Fisher model with haploid individuals and
without any Mendelian randomness, where each individual chooses one parent
from the previous generation uniformly. Suppose that we choose a population size
N and a sample size n, generate a random pedigree, and fix it. Then, we generate
multiple coalescents in this fixed pedigree, that is: we uniformly sample injections
of the set {1, . . . , n} into the set {1, . . . , N}, and then simply track the n selected
lineages until we reach their MRCA. The result might look similar to what is shown
in the Figure 1.3.

54321

t

54321

t

54321

t

54321

t

54321

t

54321

t

Figure 1.3.: Six coalescents in a fixed pedigree, no Mendelian randomness. Observe that
the MRCA-times are the same in all these realizations.

54321

t

54321 54321 54321 54321 54321

Figure 1.4.: Multiple realizations of the Kingman’s coalescent. All coalescence times are
distinct.

Each single coalescent in the Figure 1.3 looks like a typical realization of the
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Figure 1.5.: Cumulative distribution function of the pair coalescence time on a fixed pedi-
gree with haploid individuals and without any Mendelian randomness. The CDF is very
different from the cumulative distribution function of Exp1.

Kingman’s coalescent. However, if we consider all these coalescents together, we
notice that their MRCA times coincide: this would be absolutely atypical for the
Kingman’s coalescent (compare Figure 1.3 to the Figure 1.4). It means that the
distribution of these coalescents (conditioned on this particular fixed pedigree) is
very different from the Kingman’s coalescent. It is clear why it has to be different:
the fixed pedigree is just a random tree, and all our coalescents simply end up at
the (fixed!) MRCA of the entire population. The shape of the cumulative distribution
function of the MRCA times for sample size n = 2 (Figure 1.5) confirms that the
distribution of the coalescents on this fixed pedigree looks nothing like that of the
Kingman’s coalescent.

The question is: does Mendelian randomness change this situation fundamen-
tally, or does it merely smooth and obfuscate the effect that is clearly visible in
Figure 1.5? Is the Kingman’s coalescent an adequate model if the pedigree is
known and fixed? Fortunately, we can answer this question affirmatively: under
fairly mild assumptions about the random process that generates the fixed pedi-
gree, and with some Mendelian randomness, we can show that the distribution of
coalescents in a fixed pedigree is likely to be not very different from the Kingman’s
coalescent. This partially explains experimental results obtained by Wakeley et al.,
which show that Kingman’s coalescent provides a surprisingly accurate description
of gene genealogies even if the underlying pedigree is fixed.
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1. Introduction

1.3. Organization of the thesis

The rest of this thesis is organized as follows. In Chapter 2 we introduce some
notation, and briefly remind the reader of some properties of the Skorokhod space
and the Laplace transform. In Chapter 3, we formulate the problem in terms of
quenched limits of stochastic processes in random environments, and prove a
quenched limit theorem for coalescents in fixed pedigrees. In Chapter 4, we de-
scribe a simulation framework and conduct several experiments, which indicate that
the theorem from 3 might hold for more complex populations and family structures.
Finally, we finish with a conclusion in Chapter 5.
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2. Preliminaries

In this chapter, we fix the notation, and briefly remind the reader of some important
definitions and theorems.

2.1. Sets and functions

We denote the cardinality of a set A by #A. We denote the powerset of a set A by
P(A). Occasionally, we will specify a restriction on the cardinality of subsets in a
subscript. In general, if P1, . . . , Pn are some predicates on cardinal numbers, then
we write

PP1,...,Pn(A) :=

{
S ⊂ A :

n∨
i=1

Pi(#S)

}
(2.1)

to denote the set of all subsets with cardinalities such that at least one of the pred-
icates holds. We will often use intuitive abbreviations like “≥ 1” or “< ∞”. For
example, the expressions

P3,7(A), P≥1(A), P<∞(A), P≤ℵ0(A)

will denote, respectively, sets of subsets of A that

• have either exactly 3 or exactly 7 elements,

• are non-empty,

• are finite,

• are countable.

All functions from a set X to a set Y are denoted by Y X . The cartesian prod-
uct of sets {Ai}i∈I for some index set I is denoted by×i∈I Ai, the corresponding
canonical projections from the cartesian product to Ai will be denoted by πi, unless
explicitly stated otherwise. We will often denote elements of cartesian products as
(ai)i∈I with ai ∈ Ai, or just (ai)i for short. If X is yet another set, and fi : X → Ai
are some functions, we denote the product of functions by

〈fi〉i∈I : X →×
i∈I

Ai (2.2)

x 7→ (fi(x))i∈I .

11



2. Preliminaries

In particular, if f : X → A and g : X → B, then 〈f, g〉 denotes just a componentwise
defined function from X to A × B. This should not be confused with some kind of
scalar product (the standard scalar product on Rn will be denoted as 〈x, y〉Rn).

The product of functions should also not be confused with the cartesian product
of functions, defined as follows. Suppose that fi : Ai → Bi for some sets Ai, Bi.
Then we define:

×
i∈I

fi :×
i∈I

Ai →×
i∈I

Bi (2.3)

(ai)i∈I 7→ (fi(ai))i∈I .

We shall also occasionally use the notation f×k :=×k
i=1 f .

Some notational conventions are borrowed from combinatorics. Sets of all inte-
gers from 1 to n will be denoted as

[n] := {1, . . . , n} . (2.4)

The set consisting of just the two elements {0, 1} will be denoted as B (for Boolean).
For real n and natural k, the falling factorial is denoted by the Pochhammer symbol :

(n)k :=

k−1∏
i=0

(n− i) = n · (n− 1) · . . . (n− k + 1), (2.5)

with the product having k terms in total.

2.2. Skorokhod space

Definition 2.2.1 (Skorokhod space). Let (E, ρ) be a metric space. Without loss of
generality, assume that the distance between any two points a, b ∈ E is not greater
than 1, consider the truncated metric ρ′ := ρ ∧ 1 instead of ρ if necessary.

We define the Skorokhod space (D([0,∞), E), dSk) as follows. The carrier set
D([0,∞), E) consists of all E-valued càdlàg functions, that is, functions x on [0,∞)
with the following properties:

• For all t > 0 the left limit x(t−) := lims→t− x(s) exists.

• For all t ∈ [0,∞) the right limit exists and is equal to the value of x at t:

x(t) = x(t+) := lim
s→t+

x(s).

The metric d is defined as follows. Let Λ be the set of all strictly increasing
homeomorphisms from [0,∞) onto [0,∞). For λ ∈ Λ define

γ (λ) := sup
t>s≥0

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ .

12



2.3. Laplace Transform

For x, y ∈ D([0,∞), E) set

dSk(x, y) := inf
λ∈Λ

(
γ (λ) ∨

∫ ∞
0

e−ud(x, y, λ, u) du

)
, (2.6)

where
d(x, y, λ, u) := sup

t≥0
ρ (x(t ∧ u), y(λ(t) ∧ u)) .

Notice that for a λ ∈ Λ it is possible that γ(λ) = ∞, however, such λ simply do not
contribute anything to the infimum in the definition of dSk.

2.3. Laplace Transform

In this section we want to remind of some properties of the Laplace transform. All
results from this section are standard, all main ideas can be found in a similar form
for example in [4] and [1]. However, we use a Laplace transform on a space that is
taylored to our specific problem.

We begin with a definition of a “customized” version of the Laplace transform for
a space that looks like a disjoint union of multiple copies of [0,∞)d.

Definition 2.3.1. Let E be some finite set, and d ∈ N some dimension. For a finite
measure µ ∈Mf (E×[0,∞)d), we define the Laplace transform LTµ : E×[0,∞)d →
R as follows:

LTµ(y, λ) :=

∫
gy,λ dµ, (2.7)

where the integrands gy,λ are real-valued functions on E × [0,∞)d:

gy,λ(x, t) := 1{y}(x)e−〈λ,t〉Rd .

Remark 2.3.2. Since all gy,λ are continuous and bounded by 1, weak convergence
of a sequence of measures on E × [0,∞)d implies pointwise convergence of the
corresponding Laplace transforms. �

The most of the rest of this section is devoted to the proof that the reverse impli-
cation also holds.

The first thing we want to verify is that the values of our Laplace transform
uniquely determine a measure. The following lemma is a straightforward gener-
alization of the one-dimensional case (see [4] Theorem 15.6).

Lemma 2.3.3. The family of functions

F :=
{
fS,λ : S ⊆ E, λ ∈ [0,∞)d

}
,

fS,λ : E × [0,∞)d → R,

fS,λ(x, t) := 1S(x)e−〈λ,t〉Rd

is separating forMf (E × [0,∞)d).

13



2. Preliminaries

Proof. Consider the one-point compactification [0,∞] of [0,∞), and let

c : [0,∞)→ [0,∞]

denote the Alexandroff extension. Define continuous functions

f̃S,λ : Ed × [0,∞]d → R

(x, t) 7→ 1S(x)
d∏

x=1

ψ(λi, ti),

where ψ : [0,∞)× [0,∞]→ R

ψ(λ, t) :=


e−λt if t <∞
1 if t =∞, λ = 0

0 if t =∞, λ > 0.

The family F̃ = {f̃S,λ} contains a constant non-zero function: f̃E,0 = 1. Because
of

ψ(λ, t)ψ(µ, t) = ψ(λ+ µ, t),

the family F̃ is closed under pointwise multiplication:

f̃A,λ · f̃B,µ = f̃A∩B,λ+µ ∀ A,B ⊆ E, λ, µ ∈ [0,∞).

Finally, for any choice of two different elements (x, t) 6= (y, s) ∈ E× [0,∞]d, there is
a function f̃S,λ such that f̃S,λ(x, t) 6= f̃S,λ(y, s): if x 6= y, we can simply take f̃{x},0,
otherwise f̃E,λ with any positive λ will do. Now, by a simple corollary of the Stone-
Weierstrass theorem ([4] 15.3), it follows that F̃ is separating forMf (E × [0,∞]d).
Since the mapping

Mf (E × [0,∞)d)→Mf (E × [0,∞]d)

µ 7→ µ ◦ c−1

is obviously injective, it follows from fS,λ = f̃S,λ ◦ c that F is separating forMf (E ×
[0,∞)d). �

Of course, we can compute the integral of fS,λ from the integrals of gy,λ for y ∈ S,
therefore the Laplace transform contains all the information that is necessary to tell
two different measures apart.

Corollary 2.3.4. Every finite measure µ ∈Mf (E× [0,∞)d) is uniquely determined
by the values of LTµ.

14



2.3. Laplace Transform

Proof. Suppose LTµ = LTν for µ, ν ∈ Mf (E × [0,∞)d). Then for each fS,λ ∈ F it
holds: ∫

fS,λ dµ =
∑
y∈S

LTµ(y, λ) =
∑
y∈S

LTν(y, λ) =

∫
fS,λ dν. (2.8)

By 2.3.3, µ = ν must hold. �

Now we are almost ready to prove that pointwise convergence of Laplace trans-
forms implies weak convergence of measures. In the proof we will need the follow-
ing well-known yet nameless statement from the elementary real analysis.

Lemma 2.3.5. Fix some dimension d ∈ N. For x, y ∈ Rd, we write x ≤ y (x < y)
if xi ≤ yi (xi < yi) for all i ∈ [d]. Let q, p ∈ Rd with q < p. Consider the compact
rectangular box

K := [q, p] :=
{
x ∈ Rd : q ≤ x ≤ p

}
.

For each n ∈ N ∪ {∞}, let fn : K → R be some functions that are non-increasing
in the following sense:

x ≤ y ⇒ fn(x) ≥ fn(y)

for all x, y ∈ K. Suppose that f := f∞ is continuous and that fn → f pointwise as
n→∞. Then fn converge to f uniformly.

Proof. Fix an arbitrarily small ε > 0. Since K is compact, f is uniformly continuous.
Therefore, there exists a δ ≥ 0 such that for each x ∈ K and each y ∈ K the
following implication holds:

‖x− y‖∞ :=
d

max
i=1
|xi − yi| ≤ δ ⇒ |f(x)− f(y)| < ε

2
. (2.9)

The family of open (in the relative topology of K) cuboids

O :=
{

(a, b) ∩K : a, b ∈ Rd, a < b, ‖a− b‖∞ < δ
}

is an open covering of K, therefore there is an N ∈ N and cuboids Ci for i ∈ [N ]
such that {Ci}Ni=1 ⊂ O is a finite covering of K. For each i, let ai and bi denote the
vertices of the cuboid Ci, that is: C̄i = [ai, bi], where C̄i denotes the closure of Ci.
Since fn converge pointwise to f , we can find an n0 so large that the values of fn
at the selected vertices stay close enough to the values of f for all n beyond n0:

N
max
i=1
|fn(ai)− f(ai)| <

ε

2
,

N
max
i=1
|fn(bi)− f(bi)| <

ε

2
. (2.10)

Now, for any x ∈ K, we can find an index j ∈ [N ] such that x ∈ [aj , bj ]. The
monotonicity property gives us upper and lower bounds for f(x) and fn(x):

fn(aj) ≥ fn(x) ≥ fn(bj),

15



2. Preliminaries

f(aj) ≥ f(x) ≥ f(bj).

If fn(x) ≤ f(x), then from (2.9) and (2.10) we obtain:

f(x)− fn(x) ≤ f(aj)− fn(bj) ≤ |f(aj)− f(bj)|+ |f(bj)− fn(bj)| <
ε

2
+
ε

2
= ε.

Swapping the roles of vertices aj and bj in the case fn(x) > f(x) gives an analo-
gous estimation, so that |fn(x)− f(x)| < ε holds in all cases. Since the choice of
x ∈ K was arbitrary, we get

‖fn − f‖K := sup
x∈K
|fn(x)− f(x)| < ε

for all n ≥ n0. Since the ε could be chosen arbitrarily small, this is exactly the
definition of the uniform convergence. �

Now we prove the central proposition of this section. We closely follow the proof
strategy used by Billingsley ([1], Example 5.5).

Proposition 2.3.6. Let Pn, P ∈M1(E×[0,∞)d) such that the sequence (LTPn)n∈N
converges pointwise to LTP . Then the sequence (Pn)n is weakly convergent with

w-lim
n→∞

Pn = P.

Proof. Special case. First, consider a special case where E is a single element
set: E = {∗}.

We proceed in two steps. First, we show that the sequence of measures is tight.
The second step is then a standard application of Prokhorov’s theorem ([4] 13.29).

Part 1. Consider measures (µn)n, µ from M≤1([0,∞)d). Identify [0,∞)d with
{∗} × [0,∞)d and drop the first argument (constant ∗) in the notation of the Laplace
transform for a moment. Suppose that the Laplace transforms LTµn converge point-
wise to LTµ as n tends to infinity.

For u ∈ R>0 define
Ku := [0, u−1]d ⊂ [0,∞)d

and notice that this set is compact. The following little computation will be used
towards the end of the subsequent chain of inequalities:∫

[0,u]d
exp

(
−

d∑
i=1

ti/u

)
dt =

(∫ u

0
e−θ/u dθ

)d
=
([
ue−θ/u

]u
0

)d
= ud(1− e−1)d.

(2.11)

Now, for any measure ν ∈ Mf ([0,∞)d), we can estimate how much mass is con-
centrated outside of Ku:

1

ud

∫
[0,u]d

ν
[
[0,∞)d

]
− LTν(t) dt =

1

ud

∫
[0,u]d

∫
[0,∞)d

1− e−〈x,t〉Rdν[ dx] dt

16



2.3. Laplace Transform

=
1

ud

∫
[0,∞)d

∫
[0,u]d

1− e−〈x,t〉Rd dt ν[ dx]

≥ 1

ud

∫
Kc
u

∫
[0,u]d

1− exp

(
−

d∑
i=1

ti/u

)
dt ν[ dx]

=
1

ud

∫
Kc
u

ud − ud(1− e−1)d ν[ dx]

=
(

1− (1− e−1)d
)
ν [Kc

u] .

Abbreviate Cd := (1 − (1 − e−1)d), and denote the integral on the left hand side by
Iu(ν) for the rest of this proof.

Fix an arbitrarily small ε > 0. Since LTµ(0d×1) = µ[[0,∞)d] and LTµ is continu-
ous, there must be an u > 0 so small that

µ
[
[0,∞)d

]
− LTµ(t) <

εCd
2

for all t ∈ [0, u]d, and thus Iu(µ) < εCd/2. By lemma 2.3.5, LTµn converge to LTµ

uniformly on the set [0, u]d. Therefore, we can find n0 ∈ N such that

‖LTµn −LTµ‖[0,u]d := sup
t∈[0,u]d

|LTµn(t)− LTµ(t)| ≤ εCd
2

and hence |Iu(µn)− Iu(µ)| ≤ εCd/2 for all n ≥ n0. Putting all parts together, we
obtain:

Cdµn [Kc
u] ≤ Iu(µn) ≤ Iu(µ) + |Iu(µn)− Iu(µ)| ≤ εCd

2
+
εCd

2
= εCd,

that is µn[Kc
u] ≤ ε for all n ≥ n0. Therefore, {µn}n≥n0

is tight. Since finite unions of
tight families are again tight, the whole family {µn}n∈N is tight.

Part 2. Now we identify the weak limit of convergent subsequences of {µn}.
Let (µnm)m be an arbitrary subsequence of (µn)n. By Prokhorov’s theorem we

know that it contains a weakly convergent subsubsequence (µnml )l. Let ν be the
weak limit of this subsubsequence. By remark 2.3.2, we know that (LTµnml

)l con-
verges pointwise to LTν . But the limit of (LTµnml

)l is of course the same as the limit
of (LTµn)n, namely LTµ, that is LTν = LTµ. By the lemma 2.3.4, it must hold ν = µ.

Now we know that every subsequence of (µn)n contains a weakly convergent
subsubsequence that converges to µ. By Urysohn’s subsequence principle, (µn)n
itself also converges to µ.

General case. Now, instead of single-point set {∗} consider an arbitrary finite set
E. For every fixed y ∈ E,

µ(y)
n (A) := Pn({y} ×A), µ(y)(A) := P ({y} ×A)

17



2. Preliminaries

are measures fromM≤1([0,∞)d) that fulfill the premises of the special case, there-
fore µ(y) = w-limn→∞ µ

(y)
n must hold. For each f ∈ Cb(E × [0,∞)d), it holds:∫

f dPn =
∑
y∈E

∫
f(y, t)µ(y)

n [ dt]
n→∞−→

∑
y∈E

∫
f(y, t)µ(y)[ dt] =

∫
f dP,

hence we obtain Pn ⇒ P . �

We finish this section with a simple but useful corollary to the elementary lemma
2.3.5.

Corollary 2.3.7. Let µ,µn be (sub)probability measures on E× [0,∞)d (with E, d as
in 2.3.1). Suppose that µ[(E× (0,∞)d)c] = 0 and that the Laplace transforms of µn
converge to µ pointwise. Then the convergence of Laplace transforms is actually
uniform.

Proof. It is enough to consider the case where E = {∗} has just one element, the
general case is a direct consequence. Fix an arbitrary ε > 0. For each i ∈ [d], let
ei := (δij)

d
j=1 denote the canonical basis vector of Rd. Since µ[{ti = 0}] = 0, it

holds by dominated convergence:

lim
u→∞

LTµ(uei) = lim
u→∞

∫
(0,∞)d

e−utiµ[dt] = 0,

therefore we can find u ∈ [0,∞) so large that

d
max
i=1

LTµ(uei) <
ε

3
.

Since the Laplace transforms LTµn are assumed to converge to LTµ pointwise, we
can find an N ∈ N so large that

d
max
i=1
|LTµn(uei)− LTµ(uei)| <

ε

3

holds for all n > N . Fix a λ ∈ ([0, u]d)c. There is at least one index i0 ∈ [d] such
that λ ≥ uei0 . Since Laplace transforms are non-increasing, LTµn(λ) ≤ LTµn(uei0)
holds (same with µ), and therefore:

|LTµn(λ)− LTµ(λ)| ≤ |LTµn(uei0)− LTµ(uei0)|+ LTµ(uei0) + |LTµ(λ)| < 3ε

3
= ε

for all n > N . Since this works for all λ ∈ ([0, u]d)c, we get uniform convergence on
([0, u]d)c. From the lemma 2.3.5, we know that the convergence of LTµn to LTµ on
[0, u]d is also uniform, therefore it is uniform on the entire space [0,∞)d. �
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3. Coalescents in Fixed Pedigrees

In this chapter, we formulate and prove a quenched limit theorem for coalescents
in fixed pedigrees.

3.1. Cannings model with Mendelian randomness

We want to consider the simplest possible model where a coalescent on a fixed
graph converges to the Kingman’s coalescent. We assume that the population size
is some constant N ∈ N. There are disjoint generations with N diploid individuals
in each generation g ∈ N0, where g should be thought of as the age of a generation.
Each chromosome in the g-th generation is identified by an index of an individual i ∈
{1, . . . , N} ≡ [N ] and an index of the chromosome within the individual c ∈ {0, 1} ≡
B. The number of chromosomes passed on to the generation of age (g − 1) by the
i-th individual from the generation g is determined by a N0-valued random variable
νNgi . For each N and g, let νNg = (νNg,1, . . . , ν

N
g,N ) be an independent copy of some

random variable νN = (νN1 , . . . , ν
N
N ) such that {νN1 , . . . , νNN } are exchangeable and

sum up to 2N . Furthermore, we assume that for each N and each generation
g there is a uniformly chosen permutation σNg of the set [2N ]. This permutation
models the fact that every diploid individual chooses two parents from the previous
generation at random, thus our population is panmictic. The variables (νNgi )gi and
(σNg )g determine the structure of the random pedigree-graph, we therefore combine
all these variables into a single variable GN :

GN := ((νNgi )gi, (σ
N
g )g)

We introduce the Mendelian randomness in the form of independent Ber(1/2)-
distributed binary values mN

g (i, c) for each generation g ∈ N0 and each chromo-
some (i, c) ∈ [N ]×B. These values determine which one of the two chromosomes
is inherited from the parent.

Now, suppose that there is a natural number n � N (the sample size). Let I
for a moment denote the set of all injective functions from the set {1, . . . , n} ≡ [n]
into the set [N ]. Using the random variables GN and mN , we define a function-
valued Markov chain (XN,n

g )g ≡ (XN,n
g [GN ,mN ])g, such that each realization of the

random variable XN,n
g is a function from [n] to [N ] × B. Initially, we pick n different

individuals, and let XN,n
0 point to their chromosomes with index 0:

XN,n
0 := 〈U, const0〉 with U ∼ UI . (3.1)
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3. Coalescents in Fixed Pedigrees

Here, U is a uniformly chosen injection from [n] to [N ], and const0 is the constant 0
function from [n] to B. Thus, the morphism product (as introduced in section 2.1) is
a random function from [n] to [N ]× B.

The transition from generation g to generation g + 1 is defined as follows:

XN,n
g+1 :=

〈
q
[
νNg
]
◦ σNg ◦ r , mN

g

〉
◦XN,n

g . (3.2)

Here r is a simple reshaping of the indices:

r(i, c) := c ·N + i for i ∈ [N ], c ∈ B,

and q[ϕ] for ϕ = (ϕ1, . . . , ϕN ) with ϕk ∈ N0 is a function from [2N ] to [N ] defined as
follows:

q[ϕ](i) := min

k ∈ [N ] :

k∑
j=1

ϕj ≥ i

 .

If each ϕi is interpreted as the number of chromosomes passed on to the next
generation by i-th individual , then q[ϕ](σNg (r(i, c))) chooses an index of the parent
for the (i, c)-th chromosome.

Throughout the entire chapter, we will use the following notation:

I(ϕ, j) :=

(
j−1∑
i=1

ϕi,

j∑
i=1

ϕi

]
∩ Z (3.3)

Notice that I(ϕ, j) is a sequence of ϕj contiguous integers. Using this notation, we
could have defined q[ϕ](i) as the unique index j such that i ∈ I(ϕ, j).

Notice that we suppress the underlying probability space in the notation: although
q[νNg ], σNg and XN,n

g are random variables, that is, measurable functions on some
probability space, we always mean their realizations when we use function appli-
cation and function composition. Realizations of the Mendelian random variables
mN
g are functions from [N ]×B to B, realizations of q[νNg ] ◦σNg ◦ r are functions from

[N ] × B to [N ], therefore their product (as defined in (2.2)) is an endomorphism of
[N ]× B, which composes just nicely with ([N ]× B)[n]-valued realizations of XN,n

g .

3.2. Main result

The goal of this section is to formulate the main result (Theorem 3.2.5). Before we
can do this, we need a few more definitions.

Random variables XN,n
g are comparatively easy to define, but they contain too

much irrelevant information. The following definition will allow us to forget some un-
necessary details, and thereby bring XN,n

g into a common space even for different
population sizes N .
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3.2. Main result

Definition 3.2.1 (Partitions). Let A be an arbitrary set. By EA we denote the set of
all possible partitions of A:

EA :=

{
{Ai}i∈I : I index set ,∅ 6= Ai ⊆ A pairwise disjoint ,

⊎
i∈I

Ai = A

}
. (3.4)

For natural n, we write En := E[n] for short. The finest possible partition of a set A
is denoted by ∆A:

∆A := {{a} : a ∈ A} ∈ EA. (3.5)

We will drop the subscript A if it can be inferred from the context.
If A, B are some sets, f : A → B some function, then we define the partition

induced by f as follows:

E(f) :=
{
f−1({b}) : b ∈ B

}
\ {∅} ∈ EA. (3.6)

We will use the symbol E for all such mappings from BA to EA, regardless of what
A and B are.

Finally, we equip the set EA with a relation ≺. For ξ, η ∈ EA, we write ξ ≺ η if
there exists a partition τ ∈ Eξ such that

η =

{⋃
S∈F

S : F ∈ τ

}
.

Intuitively, this means that we can obtain η by merging some of the sets contained
in ξ. Notice that this relation is a partial order.

We also write ξ ` η if η arises from ξ by a pair-coalescence, more precisely: ξ ` η
if and only if ξ = {ξ1, . . . , ξk} for some k ≥ 2 and η = {ξ1 ∪ ξ2, ξ3, . . . , ξk}, that is,
ξ ≺ η and #η = #ξ − 1.

Definition 3.2.2. For every sample size n ∈ N and population size N we define
En-valued process (XN,ng )g as follows:

XN,ng := E(XN,n
g ).

All processes XN,n have values in the same space En, but they seem to slow
down as N gets larger. We account for this by rescaling the time parameter.

Definition 3.2.3 (Time scaling). For each N ∈ N denote the pair and triple coales-
cence probabilities by cN and dN respectively:

cN :=
E[(νN1 )2]

4(2N − 1)
, dN :=

E[(νN1 )3]

8(2N − 1)(2N − 2)
. (3.7)

Now we can consider En-valued time-continuous processes (XN,nbt/cN c)t∈[0,∞). We

will often write XN,nb−/cN c for short.
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3. Coalescents in Fixed Pedigrees

Our ultimate goal will be to show that the process XN,nb−/cN c, given the parentship
graph GN , is very likely to have a distribution similar to the Kingman’s coalescent for
large population sizes N . A precise definition of the Kingman’s coalescent is given
below.

Definition 3.2.4 (Kingman’s n-coalescent). Let n ∈ N be some sample size. King-
man’s n-coalescent is a En-valued time-continuous Markov chain with initial distri-
bution

P [Kn0 = ∆] = 1 (3.8)

and Q-matrix

Q
(n)
ξη :=


1 if ξ ` η
−
(

#ξ
2

)
if η = ξ

0 otherwise .
(3.9)

To formulate our main result, we need a suitable notion of convergence. For
measures µ, (µN )N on the Skorokhod space D([0,∞), En) we write

µN
P

=⇒
N→∞

µ (3.10)

if µN converges in probability to µ with respect to the Lévy-Prokhorov metric dLP:

∀ ε > 0 : lim
N→∞

P
[
dLP

(
µN , µ

)
> ε
]

= 0. (3.11)

The Lévy-Prokhorov distance between two measures µ and ν on a metric space
(M,d) is defined as follows:

dLP(µ, ν) := inf {ε > 0 : µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε ∀A ∈ B(τd)} ,

where B(τd) denotes the Borel σ-algebra generated by the topology induced by d
and Aε = {x ∈M : infa∈A d(x, a) < ε} denotes the ε-fattening of the set A. This
metric itself will not be particularly important here, what matters is that the weak
convergence is equivalent to convergence with respect to dLP if (M,d) is separable
and complete (see [1] Theorem 6.8).

Now we can formulate the main result.

Theorem 3.2.5 (Quenched limit theorem for coalescents in fixed pedigrees). Let
GN as described in the modeling section 3.1 and (XN,nbt/cN c)t as defined in 3.2.3.
Suppose that cN as well as dN/cN converge to 0 as N →∞. Then it holds:

L
( (

XN,nbt/cN c

)
t

∣∣∣GN) P
=⇒
N→∞

L (Kn) . (3.12)

The rest of the entire chapter will be devoted to the proof of this theorem.
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3.3. States and holding times representation

3.3. States and holding times representation

Neither the Lévy-Prokhorov metric, nor the Skorokhod metric are particularly con-
venient to work with directly. We therefore translate statements concerning those
metrics into more straightforward statements about convergence of simple discrete
and real-valued random variables.

The very first thing we want to do is to express weak convergence of processes in
D([0,∞), En) in terms of weak convergence of states and holding times in a much
simpler space En−1

n × [0,∞)n−1.

Definition 3.3.1 (States and holding times representation). Let D↓([0,∞), En) de-
note the subspace of those càdlàg functions (yt)t for which (#yt)t is nonincreasing
and yt converges to the trivial partition {[n]} as t → ∞. For each n ∈ N we define
functions

Θ : D↓ ([0,∞), En) → En−1
n × [0,∞)n−1 (3.13)

and their inverses Θ−1 by the following construction. Let (yt)t be some function
from D↓([0,∞), En). For each k ∈ [n] define times Tk as follows:

Tn := 0 (3.14)
Tk := inf {t ≥ Tk+1 : #yt ≤ k} (3.15)

Denote the differences between Tk by Hk, that is, for each k ∈ {2, . . . , n} set:

Hk := Tk−1 − Tk. (3.16)

Furthermore, define Sk ∈ En for each k ∈ [n] by

Sk := yTk . (3.17)

The mapping Θ can now be defined as the assignment of states Sk and holding
times Hk to the function y:

Θ(y) := ((Sk)
n
k=2, (Hk)

n
k=2) ∈ En−1

n × [0,∞)n−1. (3.18)

The inverse mapping Θ−1 is defined as follows. Given states (Sk)
n
k=2 and holding

times (Hk)
n
k=2 we can of course easily reconstruct times Tk for each k ∈ [n]:

Tk :=
n∑

i=k+1

Hi, (3.19)

which in turn allows us to recover the entire function y:

yt := Smin{k∈[n]:Tk≤t}. (3.20)
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3. Coalescents in Fixed Pedigrees

T1

T2

T3 = T4

T5 = T6

T7

T8

H2

H3

H5

H7

H8 S8 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}
S7 = {{1}, {2, 3}, {4}, {5}, {6}, {7}, {8}}

S5 = S6 = {{1}, {2, 3}, {4}, {6}, {5, 7, 8}}

S3 = S4 = {{1, 2, 3, 6}, {4}, {5, 7, 8}}

S2 = {{1, 2, 3, 6}, {4, 5, 7, 8}}

S1 = {{1, 2, 3, 4, 5, 6, 7, 8}}

87654321

t

Figure 3.1.: A possible realization of the process (XN,n
bt/cNc)t for sample size n = 8. The

states Sk and times Tk from the definition 3.3.1 are shown on the right. Some of the Hk are
also shown (the hidden ones are 0).

The holding times Hk tell us how much time the function y spends in the state
Sk with k active lineages before jumping to the state Sk−1. This definition might
look somewhat counterintuitive on first glance, because the times and states are
indexed by the decreasing number of elements in the partition (each such element
corresponding to an active lineage of the coalescent), so that we are counting back-
wards. The following example illustrates the definitions of Θ and Θ−1.

Example 3.3.2 (States and holding times). Consider the realization of the process
(XN,nbt/cN c)t shown in the Figure 3.1. The values

(S,H) = ((Sk)
n
k=2, (Hk)

n
k=2) = Θ

((
XN,nbt/cN c

)
t

)
(except those Hk that are equal 0) are shown on the right. We want to demonstrate
the evaluation of Θ−1 on a few simple cases.

• Suppose that t ∈ (T1, T2). We want to compute Θ−1(S,H)(t). Clearly,

min {k : Tk ≤ t} = 2,

therefore Θ−1(S,H)(t) = S2.

• Now suppose that t ∈ (T3, T6). This time,

min {k : Tk ≤ t} = 5,

therefore Θ−1(S,H)(t) = S5.

• Finally, let’s see what happens in points of discontinuity. For example, con-
sider t = T3 = T4. It holds:

min {k : Tk ≤ t} = 3,
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3.3. States and holding times representation

and we obtain Θ−1(S,H)(T3) = S3, so that Θ−1(S,H) is cádlág at T3.

We conclude that at least for this special case our definition of Θ−1 behaves as
expected. �

Remark 3.3.3. Notice that, in contrast toD([0,∞), En), the subspaceD↓([0,∞), En)
is separable (we can obtain a countable dense subset by enumerating all combi-
nations of n − 1 partitions, and forcing the holding times to be rational). Since it
is closed, it is also complete. Thus, convergence in the Lévy-Prokhorov metric
restricted to D↓([0,∞), En) is equivalent to weak convergence. �

As we will see later in section 3.8, for our special case the weak convergence
in D↓([0,∞), En) is equivalent to weak convergence of the corresponding En−1

n ×
[0,∞)n−1-valued random variables. The proposition 2.3.6 in turn suggests that it
is enough to control the Laplace transforms in order to ensure weak convergence.
We will achieve this by showing that the expected values of the (random, graph-
dependent) Laplace transforms converge to a known Laplace transform closely re-
lated to the Kingman’s coalescent, and that the variance tends to zero. In order to
control the variance, we need the following device.

Lemma 3.3.4. Let E be a finite set, d ∈ N a dimension, and Y, Ŷ , Y̌ random vari-
ables on some probability space (Ω,A,P) with values in E × [0,∞)d. Denote com-
ponents (“states” and “times”) of Ŷ and Y̌ by (Ŝ, Ĥ) and (Š, Ȟ) respectively. Let
F ⊂ A be a σ-algebra. Suppose that L(Y |F) = L(Ŷ |F) = L(Y̌ |F). Moreover,
suppose that Ŷ and Y̌ are conditionally independent given F . Then it holds for all
y ∈ E and λ ∈ [0,∞)d:

1. E[LTL(Y |F)(y, λ)] = LTL(Y )(y, λ)

2. Var[LTL(Y |F)(y, λ)] = LTL((Ŝ,Š),Ĥ+Ȟ)((y, y), λ)− (LTL(Y )(y, λ))2

Proof. The first equation follows immediately from the definition 2.3.1 and the tower-
property of the conditional expectation:

E
[
LTL(Y |F)(y, λ)

]
= E

[
E [gy,λ(Y )| F ]

]
= E [gy,λ(Y )]

= LTL(Y )(y, λ).

The second equation follows from the tower-property together with conditional in-
dependence and the definition of gy,λ from 2.3.1. It holds:

E
[(

LTL(Y |F)(y, λ)
)2]

= E
[
LTL(Ŷ |F)(y, λ) LTL(Y̌ |F)(y, λ)

]
(3.21)

= E
[
E
[
gy,λ(Ŷ )

∣∣∣F] E [gy,λ(Y̌ )
∣∣F]]

= E
[
E
[
gy,λ(Ŷ ) · gy,λ(Y̌ )

∣∣∣F]]
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3. Coalescents in Fixed Pedigrees

= E
[
1{y}(Ŝ)1{y}(Š)e−〈λ,Ĥ+Ȟ〉Rd

]
= E

[
g(y,y),λ

(
(Ŝ, Š), Ĥ + Ȟ

)]
= LTL((Ŝ,Š),Ĥ+Ȟ)((y, y), λ).

This, together with the first statement, entails the second part. �

The above lemma suggests to consider two copies X̂N,n, X̌N,n of the process
XN,n on the same random graph GN .

Definition 3.3.5 (Twin processes on common graph). Let N,n, GN as above. For
each N , consider two independent families of Ber(1/2)-distributed random vari-
ables m̂N

g and m̌N
g (defined analogously to mN

g in the section 3.1). Define two
processes on common graph(

X̂N,n
g

)
g
≡
(
X̂N,n
g

[
GN , m̂N

])
g
,

(
X̌N,n
g

)
g
≡
(
X̌N,n
g

[
GN , m̌N

])
g

(3.22)

analogously to (XN,n
g )g. Furthermore, let X̂N,ng , X̌N,ng be analogous to the definition

3.2.2, and X̂N,nbt/cN c, X̌
N,n
bt/cN c analogous to the construction in 3.2.3.

The overall strategy is to apply lemma 3.3.4 to E := En−1
n ,

Y = Θ
(
(XN,nbt/cN c)t

)
, Ŷ = Θ

(
(X̂N,nbt/cN c)t

)
, Y̌ = Θ

(
(X̌N,nbt/cN c)t

)
and F := σ(GN ). This will allow us to control the variance of the Laplace transform
of L

(
Θ
(
XN,nb−/cN c

)
|GN

)
. Controlling the second moment (3.21) is the difficult part, it

is the topic of the next three sections.
By the time we can control the second moment, we will have enough tools to

calculate the Laplace transform of Θ(XN,nb−/cN c). This is the much easier part, we will
defer it until section 3.7.

3.4. State spaces

The processes X̂N,n and X̌N,n contain all the available information about the ran-
dom lineages, but they are unsuitable for discussing convergence, because they
take values in different spaces for different population sizes N . We need a suitable
common state space that does not depend on the population size, but still captures
the dependence between the both components of the process (X̂N,n

g , X̌N,n
g )g.

Definition 3.4.1 (State space for coalescents on same graph). For a given sample
size n ∈ N define the state space Hn as follows:

Hn :=

ξ ⊂ P1,2

(
P ([n])2 \

{[
∅
∅

]})
:
⊎
I∈ξ

⊎
c∈I

ck = [n] for k = 1, 2

 . (3.23)
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Each set I ∈ ξ stands for an individual. Each element c of an individual stands
for a chromosome. The index k distinguishes between the first coalescent and the
second coalescent.

If ξ ∈ Hn is an element of our state space, I ∈ ξ is an individual, and c ∈ I is a
chromosome, then we will use the suggestive notation

ĉ := π1(c) ≡ c1, č := π2(c) ≡ c2 ∈ P([n])

to denote the components of c. We will also identify the indices {1, 2} with symbols
{∧,∨} and use a dot instead of an additional subscript, so that we can for example
write c = (ċ)•∈{∧,∨} . This shall emphasize the connection between the components
of the chromosomes and the corresponding coalescents X̂N,n and X̌N,n.

For ξ ∈ Hn, define:

ξ′ :=
⋃
I∈ξ

I . (3.24)

This is the set of all chromosomes in ξ, without the boundaries between individuals.

Elements of Hn should be thought of as little data structures that can hold in-
formation about two partitions of [n] simultaneously, and also represent all the
short-lived interferences and entanglements that occasionally occur between the
two processes X̂N,n and X̌N,n.

Now we need some mapping that extracts all the relevant information from the
realizations of (X̂N,n

g , X̌N,n
g ) and yields an element of the space Hn.

Definition 3.4.2. For two functions f, g : [n]→ [N ]× B, define:

H(f, g) :=

{{[
f−1(i, c)
g−1(i, c)

]
: c ∈ B

}
\
{[

∅
∅

]}
: i ∈ [N ]

}
\ {∅} . (3.25)

This is a function from (([N ]×B)[n])2 toHn, which we denote with the same symbol
H, but without any indices.

Now we can define a Hn-valued process ZN,n that captures the dependence of
two coalescents.

Definition 3.4.3. For each nonnegative integer g define:

ZN,ng :=
(
X̂N,n
g , X̌N,n

g

)
, ZN,ng := H

(
ZN,ng

)
,

and write ZN,n := (ZN,ng )g∈N0 for short.

Ultimately, we will want to make statements about convergence of En×En-valued
processes, therefore we have to establish a connection between Hn and En × En.
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3. Coalescents in Fixed Pedigrees

Definition 3.4.4. For a given sample size n ∈ N, define two functions

ρ : Hn → En × En , ι : En × En → Hn

as follows:

ρ(χ) :=
(
π1(χ′) \ {∅} , π2(χ′) \ {∅}

)
, (3.26)

ι(ξ, η) :=

{{[
x
∅

]}
: x ∈ ξ

}
∪
{{[

∅
y

]}
: y ∈ η

}
, (3.27)

where π1 and π2 are the canonical projections from P([n])2 to P([n]). Sometimes,
we shall also write

ρ1(χ) := π1(χ′)\ {∅} (3.28)
ρ2(χ) := π2(χ′)\ {∅}

to denote components of ρ separately.
Intuitively, the function ρ forgets the boundaries between individuals and cuts all

chromosomes asunder, sorting active lineages that belong to the first and second
coalescent into the first and the second partition respectively.

The function ι embeds the product En×En into Hn by putting each active lineage
into a separate chromosome of a separate individual.

The following example illustrates the definitions just introduced.

Example 3.4.5. Suppose that the population size is N = 100, the sample size is
n = 5, and that (x̂, x̌) is a realization of (X̂N,n

g , X̌N,n
g ) with values specified by the

following table:

k 1 2 3 4 5

x̂(k) (23, 0) (23, 0) (59, 0) (59, 1) (17, 1)
x̌(k) (17, 1) (17, 0) (59, 0) (17, 1) (59, 0)

Forgetting unnecessary details like individual and chromosome indices yields the
following element ξ := H(x̂, x̌) of Hn:

ξ =

{{[
{1, 2}
∅

]}
,

{[
{5}
{1, 4}

]
,

[
∅
{2}

]}
,

{[
{4}
∅

]
,

[
{3}
{3, 5}

]}}
.

Removing boundaries between individuals, and splitting each chromosome into two
components (one for x̂, one for x̌), yields:

ρ(ξ) =
(
{{1, 2} , {3} , {4} , {5}} , {{1, 4} , {2} , {3, 5}}

)
.

Applying the function ι does not restore the boundaries between the individuals.
Seven different individuals are generated instead, one for each set in the both par-
titions:

ι(ρ(ξ)) =

{{[
{1, 2}
∅

]}
,

{[
{3}
∅

]}
,

{[
{4}
∅

]}
,

{[
{5}
∅

]}}
∪
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{{[
∅
{1, 4}

]}
,

{[
∅
{2}

]}
,

{[
∅
{3, 5}

]}}
�

Remark 3.4.6. The function ι is injective, ρ is surjective, and it holds:

ρ ◦ ι = IdEn×En .

All these functions relate to E introduced in 3.2.1 as follows:

ρ ◦ H = E × E ,

where E × E denotes the cartesian product of functions.
The following diagram summarizes the relationships between the various state

spaces: (
([N ]× B)[n]

)2 H
- Hn

En × En

ρ

?

ι

6

E × E -

Notice that this diagram commutes only clockwise. �

Now we introduce a successor relation ≺ on Hn, which is related to (En,≺) de-
fined in 3.2.1, but does not have all the nice properties of a partial order. Reading
the following definition, one should have the process ZN,n in mind: ξ ≺ η holds if
and only if ZN,n can jump from ξ to η in a single step.

Definition 3.4.7 (Successor relation). Let ξ, η ∈ Hn, and suppose that

ξ′ =

{
ξαβ =

[
ξ̂αβ
ξ̌αβ

]
: α ∈ [a], β ∈ [bα]

}
for some integers a and bα. Define

Cα,β :=
{
• ∈ {∧,∨} : ξ̇αβ 6= ∅

}
, (3.29)

for each valid combination of α and β. These sets contain the indices of coales-
cents that have active lineages in the chromosomes ξαβ (remember that we have
identified the indices 1,2 with symbols ∧,∨). For each α ∈ [a], β ∈ [bα] and • ∈ Cαβ,
let µ̇αβ ∈ B be some binary value. For each α ∈ [a], • ∈ {∧,∨} and x ∈ B define an
index set:

İα(x) :=
{
β ∈ [bα] : ξ̇αβ 6= ∅, µ̇αβ = x

}
.
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3. Coalescents in Fixed Pedigrees

If η can be built from the components of ξ in the following way:

η = {ηα : α ∈ [a]}

ηα =


( ⋃
β∈İα(x)

ξ̇αβ

)
•∈{∧,∨}

: x ∈ B

 , (3.30)

then we say that η is a successor of ξ, and write ξ ≺ η.

The following example illustrates this definition on a simple special case.

Example 3.4.8. Let ξ ∈ H5 as in the previous example 3.4.5.
Suppose that a = 2, b1 = 3, b2 = 2, and that the chromosomes in ξ′ are numbered

as follows:

ξ′ =

{[
{1, 2}
∅

]
,

[
{5}
{1, 4}

]
,

[
∅
{2}

]
,

[
{4}
∅

]
,

[
{3}
{3, 5}

]}
=: {ξ1,1, ξ1,2, ξ1,3, ξ2,1, ξ2,2}

Each chromosome ξαβ = [ξ̂αβ, ξ̌αβ] contains an active lineage of either the first, or
the second, or both coalescents. The sets Cαβ capture this information:

α, β 1, 1 1, 2 1, 3 2, 1 2, 2

Cαβ ∧ ∧,∨ ∨ ∧ ∧,∨

To describe a successor of ξ, we need 7 binary values: µ̂1,1, µ̂1,2, µ̌1,2, ... and so
on. More formally: we need µ̇αβ ∈ B for α ∈ [a], β ∈ [bα], • ∈ Cαβ. Suppose that
these binary values are given by the following table:

α, β, • 1, 1,∧ 1, 2,∧ 1, 2,∨ 1, 3,∨ 2, 1,∧ 2, 2,∧ 2, 2,∨
µ̇αβ 0 0 1 1 0 0 0

Now we can group those β’s that contribute to different components of different
chromosomes:

Î1(0) = {1, 2} Î1(1) = ∅ Î2(0) = {1, 2} Î2(1) = ∅
Ǐ1(0) = ∅ Ǐ1(1) = {2, 3} Ǐ2(0) = {2} Ǐ2(1) = ∅

The numbering of elements of ξ′ together with these index sets uniquely determine
a successor η of ξ:

η =

{{[ ⋃
β∈{1,2} ξ̂1,β⋃
β∈∅ ξ̌1,β

]
,

[ ⋃
β∈∅ ξ̂1,β⋃

β∈{2,3} ξ̌1,β

]}
,

{[ ⋃
β∈{1,2} ξ̂2,β⋃
β∈{2} ξ̂2,β

]}}

=

{{[
{1, 2, 5}

∅

]
,

[
∅

{1, 2, 4}

]}
,

{[
{3, 4}
{3, 5}

]}}
.
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3.4. State spaces

Observe that the two components of ξ1,2 ended up in different chromosomes of the
same individual: two lineages from two coalescents can end up in the same chro-
mosome, but they tend not to stay together for very long because of the Mendelian
randomness.

Furthermore, notice that η would not change if we flipped all binary values for
some α ∈ [a]. There are 2a different choices of µ̇αβ that would lead to the same
successor η. �

Here are some simple facts about the relationship between the successor relation
≺ on Hn and the partial order (En,≺).

Remark 3.4.9. Let v, w ∈ Hn and ξ, ψ, η, θ ∈ En such that

ρ(v) = (ξ, ψ), ρ(w) = (η, θ).

1) v ≺ w implies ξ ≺ η, ψ ≺ θ.

2) The converse is false in general. Consider the example ξ, ψ, η, θ = [n] and

v =

{{[
[n]
[n]

]}}
, w =

{{[
[n]
∅

]}
,

{[
∅
[n]

]}}
.

Trivially, ξ ≺ η and ψ ≺ θ, but v 6≺ w. The reader might rightly object that
this degenerate case is not important in the context of coalescents (because
it represents a state where both coalescents have reached their MRCA’s).
However, the same phenomenon occurs also in non-degenerate cases: two
active lineages (one from each coalescent) within a single chromosome can
eventually separate, but they cannot end up in two distinct individuals after a
single step.

3) Here is how lineages described in 2) can separate after two steps. It holds:
v ≺ u ≺ w with

u =

{{[
[n]
∅

]
,

[
∅
[n]

]}}
.

Notice that there are two chromosomes, but they are still in the same individ-
ual. In particular, this example shows that the successor relation ≺ on Hn is
not transitive.

4) The converse of 1) is true if v ∈ im(ι), that is, if v = ι(ξ, ψ). This means that
each active lineage is in its own separate individual. Therefore, we have the
freedom to combine these lineages into arbitrary successors w ∈ Hn, as long
as ρ(w) = (η, θ), ξ ≺ η and ψ ≺ θ.

�
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3. Coalescents in Fixed Pedigrees

3.5. Functions Φa

Before we establish that the process ZN,n is indeed a Markov chain and compute
the transition probabilities, we have to introduce few more concepts. In particular,
we need functions Φa(b1, . . . , ba), which should be thought of as probabilities that
b1 lineages hit a certain individual, b2 lineages hit another individual, and so on,
for a different groups of lineages. In the haploid model, similar functions describe
the probabilities for a “b1, . . . , ba”-merger. However, in our case, lineages that hit
the same individual do not necessarily merge. We begin with a very simple lemma
where we count certain permutations.

Lemma 3.5.1. Let S be some finite set, k a natural number, and Ai, Bi ⊆ S for
each i ∈ [k] some subsets such that {Ai}ki=1 are pairwise disjoint and {Bi}ki=1 are
also pairwise disjoint. Then it holds:

#
{
σ ∈ Sym(S) :

k∧
i=1

σ(Ai) ⊆ Bi
}

=
(
#S −

k∑
i=1

#Ai
)
! ·

k∏
i=1

(#Bi)#Ai
. (3.31)

Proof. Special case. Suppose that #Ai = #Bi for all i ∈ [k], and that both {Ai}i
and {Bi}i are coverings of S. Then it holds:

#
{
σ :

k∧
i=1

σ(Ai) = Bi
}

=

k∏
i=1

# Iso[Ai, Bi] =

k∏
i=1

(#Ai)! , (3.32)

where Iso[Ai, Bi] is the set of all bijections between Ai and Bi, which has the same
cardinality as Sym(Ai), namely (#Ai)!.

General case. Now let Ai and Bi as in the premise of this lemma. If #Ai > #Bi
for some i, then both sides of (3.31) are zero. If #Ai ≤ #Bi for all i, then for each
choice of B′i ⊆ Bi with #B′i = #Ai we can set

Ak+1 :=

(
k⋃
i=1

Ai

)c

, B′k+1 :=

(
k⋃
i=1

B′i

)c

to obtain two coverings {Ai}k+1
i=1 and {B′i}

k+1
i=1 as in the special case. Therefore, it

holds:

#
{
σ :

k∧
i=1

σ(Ai) = B′i
}

=
(
#S −

k∑
i=1

#Ai
)
! ·

k∏
i=1

(#Ai)! . (3.33)

Summing over all possible choices of B′i ∈ P#Ai(Bi) we obtain:

#
{
σ :

k∧
i=1

σ(Ai) ⊆ Bi
}

=
∑

B′1,...,B
′
k

#
{
σ :

k∧
i=1

σ(Ai) = B′i
}
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=
∑

B′1,...,B
′
k

(
#S −

k∑
i=1

#Ai
)
! ·

k∏
i=1

(#Ai)!

=

(
k∏
i=1

(
#Bi
#Ai

))
·
(
#S −

k∑
i=1

#Ai
)
! ·

k∏
i=1

(#Ai)!

=
(
#S −

k∑
i=1

#Ai
)
! ·

k∏
i=1

(#Bi)Ai ,

thus the equality (3.31) holds. �

Corollary 3.5.2. Let S, Ai, Bi as in the previous lemma, and σ ∼ USym(S) a uni-
formly chosen permutation of S. Then the probability for all Ai’s to end up in cor-
responding Bi’s after the application of the random permutation σ is given by the
following formula:

P
[ k⋂
i=1

{σ(Ai) ⊆ Bi}
]

=

∏k
i=1(#Bi)#Ai

(#S)∑
i #Ai

.

Proof. Divide right hand side of (3.31) by #Sym(S) = (#S)! and apply the definition
of the Pochhammer symbol (2.5). �

Functions very similar to those in the following definition have been used implicitly
by Kingman, but the notation seems to have been introduced by Möhle and Sagitov
[8]. The definition is slightly more general than the one commonly used in the
context of haploid models, because we allow M and N to be different (with the
intent to set M = 2N later).

Definition 3.5.3. Given integers N and M , and exchangeable N0-valued random
variables (ν1, . . . , νN ) with the property

N∑
i=1

νi = M, (3.34)

we define for all a ∈ N functions Ψa : Na → [0, 1] as follows. Given b1, . . . , ba ∈ N
with

∑a
α=1 bα ≤ M , find pairwise disjoint sets B1, . . . , Ba ⊂ [M ] with #Bα = bα for

all α ∈ [a], introduce additional randomness by some USym(M)-distributed random
variable σ that is independent of ν and set:

Φa(b1, . . . , ba) := P

 N⊎
j1,...,ja=1

distinct

a⋂
α=1

{σ(Bα) ⊆ I (ν, jα)}

 , (3.35)

where j1, . . . , ja are all pairwise distinct. If b1 + · · ·+ba > M , set Φa(b1, . . . , ba) := 0.
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3. Coalescents in Fixed Pedigrees

In order to ensure that this is well-defined, we have to show that the right hand
side of the above expression depends neither on the choice of sets Bα, nor on the
random variable σ.

Indeed, with v ranging over all tuples of nonnegative integers (v1, . . . , vN ) which
sum up to M , and with b := b1 + · · ·+ ba it holds:

Φa(b1, . . . , ba) = P

⊎
v

N⊎
j1,...,ja=1

distinct

a⋂
α=1

{σ(Bα) ⊆ I (ν, jα)} ∩ {ν = v}


=
∑
v

N∑
j1,...,ja=1

distinct

P

[
a⋂

α=1

{σ(Bα) ⊆ I (v, jα)}

]
P[ν = v]

=
∑
v

N∑
j1,...,ja=1

distinct

1

(M)b

a∏
α=1

(vjα)bα P[ν = v]

=
N∑

j1,...,ja=1
distinct

1

(M)b
E

[
a∏

α=1

(νjα)bα

]

=
(N)a
(M)b

E

[
a∏

α=1

(να)bα

]
, (3.36)

where we used 3.5.1 in the third line, and exchangeability of the να’s in the last
equation. Since the last expression does not contain σ or any Bα’s, the functions
Φa are well-defined.

If instead of a single underlying variable ν = (ν1, . . . , νN ) we have an entire family
of variables {νi}i∈I , we shall make it visible by writing Φi

a instead of just Φa. The
exact meaning should be inferred from the context.

Remark 3.5.4. The explicit formula (3.36) also makes it obvious that all functions
Φa are symmetric in the sense that their value does not depend on the order of
parameters b1, . . . , ba. �

Variations of the following simple lemma appear in Möhle’s work (see e.g. Lemma
3.1.5 in [7]). However, instead of manipulating combinatoric expressions to prove
probabilistic statements, we rather use probabilistic coupling arguments to prove
combinatoric identities.

Lemma 3.5.5 (Consistency of Φ). Let N,M , ν, a and b1, . . . , ba ∈ N as in the
definition 3.5.3. It holds:

Φa(b1, . . . , ba) =

a∑
k=1

Φa(b1, . . . , bk−1, bk + 1, bk+1, . . . , ba) + Φa+1(b1, . . . , ba, 1).

(3.37)
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Proof. Let sets B1, . . . , Ba and permutation σ as in the definition 3.5.3. Let Ba+1

be yet another set with a single element that is not contained in any other Bα.
Fix a realization v of ν. Suppose that there are indices j1, . . . , ja ∈ [N ] such that
σ(Bα) ⊆ I(v, jα) for all α ∈ [a]. Trivially, σ(Ba+1) is either contained in I(v, jk) for
some k ∈ [a], or there exists an index ja+1 ∈ [N ] distinct from all other indices jα,
such that σ(Ba+1) is contained in I(v, ja+1). Thus:

a⋂
α=1

{σ(Bα) ⊆ I(v, jα)} = a⊎
k=1

a⋂
α=1
α 6=k

{σ(Bα) ⊆ I(v, jα)} ∩ {σ(Bk ∪Ba+1) ⊆ I(v, jk)}



]

 ⋃
ja+1

distinct

a+1⋂
α=1

{σ(Bα) ⊆ I(v, jα)}

 .

Summing the probabilities of the above events for all possible choices of v and
j1, . . . , ja yields (3.37). �

The following lemma contains estimates similar to those proved by Möhle and
Sagitov [8], but our proof is purely measure theoretic, and arguably closer to the
intuition.

Lemma 3.5.6 (Anti-monotonicity of Φ). Let a, h ∈ N, b1, . . . , ba ∈ N, g1, . . . , gh ∈ N
such that h ≥ a and gα ≥ bα for all α = 1, . . . , a. Then it holds:

Φh(g1, . . . , gh) ≤ Φa(b1, . . . , ba). (3.38)

Proof. If g := g1 + · · · + gh > M , then Φh(g1, . . . , gh) = 0, so there is nothing to
show. Otherwise we can find pairwise disjoint subsets G1, . . . , Gh of {1, . . . ,M}
with #Gχ = gχ for χ = 1, . . . , h. Then we can choose Bα ⊂ Gα with #Bα =
bα for α = 1, . . . , a. Clearly, for all permutations σ ∈ Sym(M) and any subset
X ⊆ {1, . . . ,M}, σ(Gα) ⊆ X implies σ(Bα) ⊆ X, and therefore for a random
permutation σ it holds:

{σ(Gα) ⊆ X} ⊆ {σ(Bα) ⊆ X}

for all α = 1, . . . , a. Now, simply from the monotonicity of measure P we obtain:

Φh(g1, . . . , gh) = P

 N⊎
j1,...,jh=1

distinct

h⋂
χ=1

{
σ(Gχ) ⊆ I (ν, jχ)

}
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≤ P

 N⊎
j1,...,ja=1

distinct

a⋂
α=1

{σ(Bα) ⊆ I (ν, jα)}


= Φa(b1, . . . , ba).

Therefore, Φa are anti-monotonous. �

The anti-monotonicity of the functions Φa becomes useful as soon as we make
additional assumptions about the asymptotic behavior of the pair coalescence prob-
ability. In the next two lemmas, we want to investigate the asymptotic behavior of
Φa, as well as asymptotic behavior relative to the pair coalescence probability.

Lemma 3.5.7 (Asymptotic behavior of Φa). Fix some a ∈ N. For each N ∈ N, let
MN ∈ N ≥ a and νN = (νN1 , . . . , ν

N
N ) with the property νN1 + · · · + νNN = MN as in

3.5.3. Suppose that ΦN
1 (2) converges to 0 as N →∞. Then it holds:

lim
N→∞

ΦN
a (b1, . . . , ba) =

{
1 if b1 = · · · = ba = 1

0 otherwise .
(3.39)

Proof. For all positive integers b1, . . . , ba with bα ≥ 2 for some α ∈ [a], the anti-
monotonicity shown in 3.5.6 and the remark 3.5.4 imply:

0 ≤ ΦN
a (b1, . . . , ba) ≤ ΦN

1 (2)
N→∞−→ 0,

thus the second part of (3.39) holds.
On the other hand, for all fixed natural numbers b ≤MN it holds:∑

ξ∈E[b]

ΦN
#ξ

(
(#α)α∈ξ

)
= 1. (3.40)

To see why this is true, notice that⊎
ξ∈E[b]

⊎
jα, α∈ξ
distinct

⋂
α∈ξ

{
σ(α) ⊆ I(νN , jα)

}
is merely a complicated way to express that the permutation σ somehow maps [b]
into [MN ], which is a trivial event with probability 1 (in the above formula, α’s are
subsets of [b], and we use ξ itself as the index set).

This implies (with ∆ being the finest possible partition of [b]):

ΦN
b (1, . . . , 1) = ΦN

#∆

(
(#α)α∈∆

)
= 1−

∑
ξ∈E[b]\{∆}

ΦN
#ξ

(
(#α)α∈ξ

)
.

By pigeonhole principle, for every ξ on the right hand side there must be an α ∈ ξ
such that #α ≥ 2. Therefore, by anti-monotonicity shown in lemma 3.5.6 and by
the remark 3.5.4, the right hand side converges to 1, so that the first case in (3.39)
also holds. �
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In the proof of the next lemma we closely follow Möhle and Sagitov ([9], 5.5).

Lemma 3.5.8 (Pair coalescence is all that matters). For each N ∈ N let MN and
νN as in the previous lemma, and furthermore assume that MN → ∞ for N → ∞.
Suppose that ΦN

1 (2) as well as the quotient

ΦN
1 (3)

ΦN
1 (2)

(3.41)

converge to zero. Then it holds:

lim
N→∞

ΦN
a (b1, . . . , ba)

ΦN
1 (2)

=


+∞ if b1 = · · · = ba = 1

1 if bα = 2 for exactly one α ∈ [a] and 1 otherwise
0 otherwise

(3.42)

Proof. We investigate three different cases from the above formula separately. We
need the third case before the second one, therefore the order will be 1,3,2 rather
than 1,2,3.

Case 1: b1 = · · · = ba = 1.
Since ΦN

a (1, . . . , 1) converges to 1 by lemma 3.5.7, while ΦN
1 (2) is assumed to con-

verge to 0, the first case in (3.42) is obvious.

Case 3: bα ≥ 3 for some α, or bα ≥ 2 for at least two different α’s.
Fix an ε > 0. Notice that for large enough x ∈ R>0, the function x 7→ (x)3 is increas-
ing. Therefore, for all sufficiently large N , we can apply the Markov’s inequality:

P
[
νN1 > εMN

]
≤ E[(νN1 )3]

(εMN)3

,

hence

N

ΦN
1 (2)

P
[
νN1 > εMN

]
≤ (MN)3

(εMN)3

· N E[(νN1 )3]

(MN)3 ΦN
1 (2)

=
(MN)3

(εMN)3

· ΦN
1 (3)

ΦN
1 (2)

N→∞−→ 0. (3.43)

By exchangeability of νN1 , . . . , ν
N
N , we obtain:

ΦN
2 (2, 2) =

(N)2

(MN)4

E
[(
νN1
)

2

(
νN2
)

2

]
=

1

(MN)4

∑
i 6=j

E
[(
νNi
)

2

(
νNj
)

2

]
,

We can split each summand E[(νNi )2 (νNj )2] depending on whether νNi ≤ εMN or
not, and find upper bounds for both parts separately. In the first case it holds:

∑
i 6=j

E
[(
νNi
)

2

(
νNj
)

2
1{νNi ≤εMN}

]
≤ εMN

N∑
j=1

E

(νNj )2 ∑
i 6=j

(νi − 1)


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≤ εM2
N

N∑
j=1

E
[(
νNj
)

2

]
≤ εM2

N N E
[(
νN1
)

1

]
= εM2

N (MN)2 ΦN
1 (2)

≤ εM4
N ΦN

1 (2).

In the second case we obtain:

∑
i 6=j

E
[(
νNi
)

2

(
νNj
)

2
1{νNi >εMN}

]
≤M3

N

N∑
i,j=1

E
[
νj 1{νNi >εMN}

]
= M4

N N P
[
νN1 > εMN

]
.

Both estimates together entail:

ΦN
2 (2, 2)

ΦN
1 (2)

≤ M4
N

(MN)4

(
ε+

N

ΦN
1 (2)

P
[
νN1 > εMN

])
.

By (3.43), the right hand side converges to ε. Since ε could be chosen arbitrarily
small, we obtain the convergence ΦN

2 (2, 2)/ΦN
1 (2)→ 0.

Since both quotients ΦN
1 (3)/ΦN

1 (2) and ΦN
2 (2, 2)/ΦN

1 (2) converge to zero, by the
anti-monotonicity shown in 3.5.6 we know that ΦN

a (b1, . . . , ba)/Φ
N
1 (2) must also con-

verge to 0.

Case 2: bα = 2 for exactly one α, 1 otherwise.
Recall the lemma 3.5.5. It holds:

ΦN
a−1(2, 1, . . . , 1) = ΦN

a−1(3, 1, . . . , 1) +
a−1∑
k=2

ΦN
a−1(2, 1, . . . , 1, 2, 1, . . . , 1)

+ ΦN
a (2, 1, . . . , 1) .

From case 3 above, we know that the first two summands in this formula are
o(ΦN

1 (2)). Reading the above formula from right to left, and applying it (a − 1)
times, we obtain:

lim
N→∞

ΦN
a (2, 1, . . . , 1)

ΦN
1 (2)

= lim
N→∞

ΦN
a−1(2, 1, . . . , 1)

ΦN
1 (2)

= · · · = lim
N→∞

ΦN
1 (2)

ΦN
1 (2)

= 1,

and the proof is finished. �

Recall the definition 3.4.7, where we introduced the successor relation. A state
η ∈ Hn is a successor of ξ ∈ Hn if and only if there is a positive probability for
the process ZN,n to jump from ξ to η. The functions Ψa enable us to express the
transition probabilities of the Markov chain ZN,n succinctly.
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3.5. Functions Φa

Lemma 3.5.9 (Transition probabilities of ZN,n). The process ZN,n is a Markov chain
with initial distribution

L(ZN,n0 ) = L(H(X̂N,n
0 , X̌N,n

0 )) (3.44)

and transition probabilities given by the matrix Π(N,n) with entries

Π
(N,n)
ξη := P

[
ZN,ng+1 = η

∣∣∣ZN,ng = ξ
]

(3.45)

=

{
(1

2)#ρ1(ξ)+#ρ2(ξ)−a ΦN
a (b1, . . . , ba) if ξ ≺ η

0 otherwise ,

for ξ, η ∈ Hn. Here a and bα are as in definition 3.4.7.

Proof. At this stage, we cannot simplify the formula for the initial distribution, (3.44)
is just the definition.

Suppose that the event {ZN,ng = ξ} occurs, that is, there are some distinct xαβ ∈
[N ]× B such that

X̂N,n
g |ξ̂αβ = X̌N,n

g |ξ̌αβ = xαβ.

Conditioned on the event {ZN,ng = ξ}, the occurrence of the event {ZN,ng+1 = η} is
equivalent to the fulfillment of the following two conditions:

1) There must be a distinct individuals in the generation (g + 1), with indices
j1, . . . , ja ∈ [N ], and for each α ∈ [a] and β ∈ [bα] it must hold:

π1 ◦ X̂N,n
g+1|ξ̂αβ = π1 ◦ X̌N,n

g+1|ξ̌αβ = jα. (3.46)

This means: for each α, all sample indices from
⋃bα
β=1 ξ̂αβ ⊂ [n] must be

assigned by X̂N,n
g+1 to the individual with index jα (analogously for X̌N,n

g+1). We
denote this event by G(j1, . . . , ja):

G(j1, . . . , ja) :=
a⋂

α=1

bα⋂
β=1

{
π1 ◦ X̂N,n

g+1|ξ̂αβ = jα

}
.

Notice that it is irrelevant whether we use X̂N,n or X̌N,n in the definition,
because G(j1, . . . , ja) depends only on the underlying random graph, which
is common for both processes.

2) The second condition deals with the Mendelian randomness. All the relevant
values of m̂N

g and m̌N
g must coincide with µ̇αβ up to simultaneous flips of all

µ̇αβ ’s for a fixed α ∈ [a]. More precisely, there must be some Boolean values
w1, . . . , wa ∈ B such that for all α ∈ [a], β ∈ [bα], • ∈ Cαβ it holds:

ṁN
g (xαβ) = µ̇αβ Y wα,

39



3. Coalescents in Fixed Pedigrees

where Y denotes the binary XOR operation on Booleans. Let’s denote this
event as follows:

M(w1, . . . , wa) :=
a⋂

α=1

bα⋂
β=1

⋂
•∈Cαβ

{
ṁN
g (xαβ) = µ̇αβ Y wα

}
.

Recall the formula (3.2), by which we defined XN,n. It allows us to express the
events G(j1, . . . , ja) and M(w1, . . . , wa) in terms of the random permutation σNg ,
family sizes νNg , and Boolean random variables m̂N

g and m̌N
g .

The event G(j1, . . . , ja) occurs if and only if for each α ∈ [a], the permutation σNg
maps all xαβ ’s into the interval I(νNg , jα) (recall that this is a set of νNg,jα contiguous
integers):

G(j1, . . . , ja) =
a⋂

α=1

{
σNg
(
r
(
{xαβ}bαβ=1

))
⊆ I(νNg , jα)

}
.

We have used events of this sort in the definition 3.5.3, therefore:

N∑
j1,...,ja=1

distinct

P [G(j1, . . . , ja)] = ΦN
a (b1, . . . , ba).

Recall that m̂N
g and m̌N

g are just arrays of independent Ber(1/2)-distributed ran-
dom variables. The total number of relevant entries can be calculated as follows:

a∑
α=1

bα∑
β=1

#Cαβ = #ρ1(ξ) + #ρ2(ξ),

where Cαβ are as in (3.29). Thus we get:

P [M(w1, . . . , wa)] =

(
1

2

)#ρ1(ξ)+#ρ2(ξ)

.

Noticing that the events G(j1, . . . , ja), M(w1, . . . , wa) and ZN,ng = ξ are all inde-
pendent, we obtain:

P
[
ZN,ng+1 = η

∣∣∣ZN,ng = ξ
]

=

N∑
j1,...,ja=1

distinct

∑
w1,...,wa∈B

P
[
G(j1, . . . , ja) ∩M(w1, . . . , wa)

∣∣ZN,ng = ξ
]

=

 ∑
w1,...,wa∈B

P [M(w1, . . . , wa)]

 ·
 N∑
j1,...,ja=1

distinct

P [G(j1, . . . , ja)]


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3.6. Limiting behavior of two coalescents on common graph

=

(
1

2

)#ρ1(ξ)+#ρ2(ξ)−a
ΦN
a (b1, . . . , ba).

Also notice that the choice of xαβ ’s was irrelevant. It means that the probability
of the event {ZN,ng+1 = η} depends only on {ZN,ng = ξ}, and not on some hidden
values of the underlying processes X̂N,n and X̌N,n. Thus, ZN,n is indeed a Markov
chain. �

3.6. Limiting behavior of two coalescents on common
graph

Both the following lemma as well as the subsequent theorem have beed proved by
Möhle [6]. The lemma is cited in slightly reduced form, the proof is omitted.

Lemma 3.6.1 (Möhle, 1998). For some dimension d ∈ N, let A ∈ Rd×d be a matrix
with

‖A‖ := max
r

d∑
c=1

|Arc| = 1,

let (cN )N∈N0 be a sequence of positive real numbers with limN→∞ cN = 0. Suppose
that P := limm→∞A

m exists. Let (BN )N∈N0 be a sequence of d× d matrices such
that

G := lim
N→∞

PBNP

exists. Then for each t ∈ [0,∞) it holds:

lim
N→∞

(A+ cNBN )bt/cN c = P − I + etG. (3.47)

Proof. Möhle 1998 [6], Lemma 1. �

The premises of the following theorem (originally proved by Möhle [6]) have been
tweaked a little. We removed an unnecessary strict assumption about the sequence
(cN )N . Even though the original proof goes through almost word for word, we
include our own interpretation of the proof for completeness.

Theorem 3.6.2 (Separation of time scales). For each N ∈ N0 let (Y N
g )g∈N0 be a

time-discrete Markov chain with some finite state space E, and let

Π(N) :=
(
P
[
Y N
g+1 = η

∣∣Y N
g = ξ

])
ξ,η∈E

be the transition matrix of Y N . Let (cN )N∈N0 be a sequence of positive real numbers
that converges to 0. Suppose that the following limits exist:

A := lim
N→∞

ΠN , P := lim
m→∞

Am, G := lim
N→∞

P
Π(N) −A

cN
P.
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3. Coalescents in Fixed Pedigrees

Furthermore, suppose that the initial distributions L(Y N
0 ) converge weakly to some

measure µ on E.
Then the finite dimensional distributions of the processes

(
Y N
bt/cN c

)
t∈[0,∞)

con-
verge to those of a time-continuous Markov process (Yt)t with initial distribution µ,
transition matrix

Π(t) = P etG

and infinitesimal generator G.

Proof. For each N ∈ N0, set BN := c−1
N (Π(N) −A). From lemma 3.6.1 it follows:

lim
N→∞

(
Π(N)

)bt/cN c = lim
N→∞

(A+ cNBN )bt/cN c = P etG = Π(t).

Hence the finite-dimensional distributions of Y N
b−/cN c converge to those of a time-

continuous Markov process Y with initial distribution µ and transition matrix Π(t).
Since P is a projection matrix, it holds P = P 2. Hence PG = G and

P etG = P

∞∑
k=0

tkGk

k!
= P +

∞∑
k=1

tkPGk

k!
= P − I + etG.

Therefore, the infinitesimal generator is given by

lim
t→0+

Π(t)−Π(0+)

t
= lim

t→0+

P − I + etG − P
t

= lim
t→0+

etG − I
t

= G.

�

This theorem, together with lemmas 3.5.7 and 3.5.8 now enables us to investigate
the asymptotic behavior of the Markov chain ZN,n.

Lemma 3.6.3 (The fdd-limit of ZN,n). The finite dimensional distributions of discrete
Markov chains (ZN,nbt/cN c)t∈[0,∞) converge to those of a time continuous Markov chain
(Znt )t∈[0,∞) with values inHn as N tends towards infinity. The Markov chain Zn has

P [Zn0 = ι(∆,∆)] = 1 (3.48)

as initial distribution, and the transition matrix

Π(n)(t) = P etG, (3.49)

where P and G are Hn × Hn-matrices given below. The infinitesimal generator G
is defined by the following limit:

G := lim
N→∞

P
Π(N,n) −A

cN
P. (3.50)
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3.6. Limiting behavior of two coalescents on common graph

The matrices A and P are defined as follows (for ξ, η ∈ Hn):

Aξη :=

{
(1

2)#ρ1(ξ)+#ρ2(ξ)−#ξ′ if ξ ≺ η and #η = #ξ′

0 otherwise
(3.51)

Pξη :=

{
1 if η = (ι ◦ ρ)(ξ)

0 otherwise .
(3.52)

In words: A puts every chromosome into a separate individual (and possibly splits
chromosomes within individuals), P immediately tears all individuals and chromo-
somes apart, and puts every active lineage into a separate individual.

Proof. Initial distribution. Recall that X̂N,n
0 and X̌N,n

0 are uniformly chosen injec-
tive functions from [n] to [N ] × {0} ' [N ]. There are (N)n injective functions from
[n] to [N ]. Regardless of what im(X̂N,n

0 ) happens to be, there are (N−n)n injective
functions from [n] to ([N ]× {0}) \ im(X̂N,n

0 ). Therefore, the chance that images of
X̂N,n

0 and X̌N,n
0 do not intersect is:

P
[
im(X̂N,n

0 ) ∩ im(X̌N,n
0 ) = ∅

]
=

(N − n)n
(N)n

N→∞−→ 1.

Hence L(ZN,n0 )
N→∞
=⇒ δι(∆,∆).

Transition probabilities. Set A := limN→∞Π(N,n), where Π(N,n) is the tran-
sition matrix of ZN,n, described in 3.5.9. From the lemma 3.5.7 we know that
limN→∞ΦN,2N

a (b1, . . . , ba) is either 0 or 1, and that it is 1 if and only if all bα’s are
equal to 1. All bα’s being equal to 1 means that each chromosome of ξ picks it’s
own separate parent individual from the previous generation, that is a = #η = #ξ′.
Thus, we obtain (3.51).

Now let P := limm→∞A
m. Before we can calculate the entries of P , we need a

better understanding of the matrix A. Here are few simple observations.

i) Suppose that ξ ∈ im(ι). Every active lineage is in its own chromosome, thus

#ρ1(ξ) + #ρ2(ξ)−#ξ′ = 0.

Hence Aξξ = 1 and Aξη = 0 for all η 6= ξ.

ii) Suppose that ξ 6∈ im(ι). Write θ := (ι ◦ ρ)(ξ) for short. There is an intermediate
state η ∈ Hn such that ξ ≺ η ≺ θ and Aξη > 0, Aηθ > 0. Such a state η can be
constructed from ξ as follows:

1) Put each chromosome c = [ĉ, č] ∈ ξ′ into a separate individual

2) If both ĉ and č are nonempty, split the chromosome c into two chromosomes
[ĉ,∅] and [∅, č] (but keep them within the same individual).
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3. Coalescents in Fixed Pedigrees

Formally, this can be expressed as follows:

η :=

{{[
ĉ
∅

]
,

[
∅
č

]}
\
{[

∅
∅

]}}
c∈ξ′

(3.53)

Clearly, #η = #ξ′. The entry Aξη is 2−k, where k is the number of chromosomes
c with both ĉ and č nonempty. Furthermore, θ is the only successor of η with #θ =
#η′, therefore Aηθ = 1. Here is a little example that illustrates the relationship
between ξ, η and θ:

ξ =

{{[
{1}
{1, 2}

]
,

[
{2}
∅

]}}
η =

{{[
{1}
∅

]
,

[
∅
{1, 2}

]}
,

{[
{2}
∅

]}}
θ =

{{[
{1}
∅

]}
,

{[
∅
{1, 2}

]}
,

{[
{2}
∅

]}}
Since all entries ofA are non-negative, togetherAξη > 0 andAηθ > 0 implyA2

ξθ > 0.

iii) Finally, observe that Aξη > 0 implies ρ(η) = ρ(ξ) for all ξ, η ∈ Hn.

Here is a summary of the above statements:

i) if ξ ∈ im(ι), then Aξξ = 1,

ii) for all ξ ∈ Hn and θ = (ι ◦ ρ)(ξ) it holds: (A2)ξθ > 0,

iii) Aξη > 0 implies (ι ◦ ρ)(η) = (ι ◦ ρ)(ξ).

If we interpret matrix A as a transition matrix of a Hn-valued Markov chain (Yk)k,
then the above statements translate into following:

i) the states ξ ∈ im(ι) are absorbing,

ii) for each ξ ∈ Hn, an absorbing state (ι ◦ ρ)(ξ) can be reached in two steps,

iii) from each ξ ∈ Hn, at most one absorbing state is reachable (namely (ι◦ρ)(ξ)).

Let p be the minimum probability of the event that (Yk)k, starting at some ξ ∈ Hn,
reaches an absorbing state in two steps:

p := inf
ξ∈Hn

(
A2
)
ξ,(ι◦ρ)(ξ)

Notice that p > 0 by the second statement in the above list (Hn is finite). Thus,
again with θ = (ι ◦ ρ)(ξ), it holds:

Pξ [Ym 6= θ] ≤ (1− p)bm/2c m→∞−→ 0,

44



3.6. Limiting behavior of two coalescents on common graph

and hence
Pξθ =

(
lim
m→∞

Am
)
ξθ

= 1− lim
m→∞

Pξ [Ym 6= θ] = 1.

Thus, the formula (3.52) is also valid.
Application of Möhle’s theorem 3.6.2 yields a proof of the lemma. �

The previous lemma might seem somewhat unsatisfactory, because of the un-
wieldy transition matrix for which we have only a semi-explicit formula. However,
the lemma also tells us that the limit process Zn, albeit being formally defined as
taking values on the whole space Hn, spends the entire time in a much simpler
subspace that can be identified with En × En. This allows us to cherry-pick only the
relevant entries of the transition matrix, and ignore all the transitions from the states
in which the chain does not spend any time.

Lemma 3.6.4 (Truncated transition matrix). For a given sample size n, denote by
G̃(n) the E2

n × E2
n-matrix with entries

G̃
(n)
(ξ,ψ),(η,θ) := Gι(ξ,ψ),ι(η,θ), (3.54)

where ξ, ψ, η, θ are partitions from En, andG is theHn×Hn-matrix from the previous
lemma.

The matrix G̃(n) is equal to the Kronecker sum of two Q-matrices of the Kingman’s
coalescent:

G̃(n) = Q(n) ⊕Q(n) . (3.55)

Proof. Fix partitions ξ, ψ, η, θ ∈ En, and write x := ι(ξ, ψ), y := ι(η, θ) for short. For
the rest of this lemma, set ã := #ξ + #ψ − 1.

Since Pqw = Aqw = Iqw for all q ∈ im(ι), and because AP = P , we can drop the
first projection matrix and replace AP by the identity matrix I in the formula (3.50),
obtaining a slightly shorter formula for the matrix entry in question:

G̃
(n)
(ξ,ψ),(η,θ) = lim

N→∞
c−1
N

(
Π(N,n)P − I)xy . (3.56)

If (Π(N,n)P )xy > 0, then there must exist a state q ∈ Hn such that x ≺ q and
ρ(q) = (η, θ). Thus, by the first part of the remark 3.4.9, whenever we want to show
that the entry (3.56) is zero, it is sufficient to consider the cases where ξ ≺ η and
ψ ≺ θ.

In the lemma 3.5.8 we have shown that for all a ∈ N, b1, . . . , ba ∈ N with a < ã
and b1 + · · ·+ ba = ã+ 1, it holds:

lim
N→∞

Φa(b1, . . . , ba)

Φ1(2)
= 0.

Therefore c−1
N Π

(N,n)
xq converges to 0 as N →∞ for all q ∈ Hn with #q < ã.
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Now we will compute the entries of G̃(n) by considering multiple different cases.
The following formula will serve us as a task list:(

Q(n) ⊕Q(n)
)

(ξ,ψ),(η,θ)

=
(
Q(n) ⊗ I + I ⊗Q(n)

)
(ξ,ψ),(η,θ)

= Q
(n)
ξη Iψθ + IξηQ

(n)
ψθ

=



if ψ 6= θ :


if ξ 6= η : 0

if ξ = η :

{
if ψ ` θ : 1

if ψ 6` θ : 0

if ψ = θ :

 if ξ 6= η :

{
if ξ ` η : 1

if ξ 6` η : 0

if ξ = η : −
(

#ξ
2

)
−
(

#ψ
2

)
.

(3.57)

Case 1: ψ 6= θ, ξ 6= η.
If either ψ 6≺ θ, or ξ 6≺ η, then (3.56) equals 0. Assume ψ ≺ θ and ξ ≺ η.

Let q ∈ Hn with x ≺ q. Because ψ 6= θ and ξ 6= η, both θ and η must have fewer
elements than ψ and ξ respectively. Since it is impossible for q to contain more
individuals then there are active lineages, it follows:

#q ≤ #η + #θ ≤ (#ξ − 1) + (#ψ − 1) = ã− 1 < ã ,

therefore c−1
N Π

(N,n)
xy converges to 0.

Since this holds for all choices of q with x ≺ q, and since the contribution of the
identity matrix is also 0, the left hand side of (3.56) is 0.

Case 2: ξ = η, ψ ` θ.
There is only one q ∈ Hn with #q ≥ ã such that ρ(q) = (η, θ), namely q = x. All
other w ∈ Hn\{q} with ρ(w) = (η, θ) have #w < ã, and therefore do not contribute
to the result. Thus, the chain of equalities in (3.56) can be continued as follows:

lim
N→∞

c−1
N

(
Π(N,n)P − I

)
xy

= lim
N→∞

c−1
N Π(N,n)

xy

= lim
N→∞

(1
2)(ã+1)−ãΦã(2, 1, . . . , 1)

1
2Φ1(2)

= 1 .

Here, we used lemma 3.5.8. Notice that there are #ψ(#ψ − 1)/2 different θ’s with
ψ ` θ.

Case 3: ξ = η, ψ 6= θ, ψ 6` θ.
If ψ 6≺ θ, then (3.56) becomes 0, as explained above. Assume ψ ≺ θ. Since ψ 6= θ
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and ψ 6` θ, it must hold #θ ≤ #ψ − 2. Similarly to the first case, for each q ∈ Hn
with ρ(q) = (η, θ) we obtain the estimate

#q ≤ #η + #θ ≤ #ξ + (#ψ − 2) = ã− 1 < ã ,

therefore the relevant entry of c−1
N Π(N,n)P vanishes for N → ∞, and the entry of

the G̃(n) matrix becomes 0.

Case 4: ψ = θ, ξ ` η.
This case is analogous to case 2, we again obtain a 1. As in the second case, there
are #ξ(#ξ − 1)/2 different η’s with ξ ` η.

Case 5: ψ = θ, ξ 6= η, ξ 6` η.
Analogous to case 4, we get a 0.

Case 6: ξ = η, ψ = θ.
Since Π(N,n)P is a stochastic matrix, it holds:∑

q∈Hn

(
Π(N,n)P − I

)
xq

= 1− 1 = 0.

We have already computed all other relevant entries in the x-th row. The only non-
zero entries are the 1’s from the second and the fourth case, therefore it holds:

lim
N→∞

c−1
N

(
Π(N,n)P − I

)
xx

= −
∑
q∈Hn
q 6=x

lim
N→∞

c−1
N

(
Π(N,n)P − I)xq

= −
∑

q∈im(ι)
q 6=x

lim
N→∞

c−1
N

(
Π(N,n)P − I)xq

= −
(

#ξ

2

)
−
(

#ψ

2

)
.

The outcomes of the case analysis agree with the formula (3.57) for the Kro-
necker sum Q(n) ⊕Q(n), thus the proof is finished. �

Remark 3.6.5. Recall that Pqw > 0 only if w ∈ im(ι), and note that by definition 3.50
the image of G must be contained in the image of P . Thus, by a simple induction
over k ∈ N0, we obtain: (

Gk
)
ι(ξ,ψ),ι(η,θ)

=
(
(G̃(n))k

)
(ξ,ψ),(η,θ)

.

This, of course, carries over to the definition of the matrix exponential, so that for
all t ∈ [0,∞) it holds:

exp
(
tG
)
ι(ξ,ψ),ι(η,θ)

= exp
(
tG̃(n)

)
(ξ,ψ),(η,θ)

. (3.58)

�
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Now we can prove the following central proposition.

Proposition 3.6.6. The finite dimensional distributions of (X̂N,nbt/cN c, X̌
N,n
bt/cN c)t con-

verge to those of (K̂nt , Ǩnt )t as N → ∞, where K̂n and Ǩn are two independent
copies of the Kingman’s coalescent.

Proof. Fix an integer k and times t1, . . . , tk ∈ [0,∞). We have to show that

(X̂N,nbti/cN c, X̌
N,n
bti/cN c)

k
i=1

N→∞
=⇒ (K̂nti , Ǩ

n
ti)
k
i=1 .

First, let’s consider the En × En-valued process
(
ρ(Znt )

)
t
. Fix some partitions

ξ1, . . . , ξk, ψ1, . . . , ψk ∈ En and write zk := ι(ξk, ψk) for short. Moreover, set t0 := 0
and ξ0, ψ0 := ∆. Since for all ti the Markov chain is almost surely in im(ι), from the
lemma 3.6.4 and the previous remark we obtain:

P

[
k⋂
i=1

{
ρ(Znti) = (ξi, ψi)

}]
=

= P

[
k⋂
i=1

{
Znti = zi

}]

= P [Zn0 = ι(∆,∆)] ·
k∏
i=1

P
[
Znti = zi

∣∣∣Znti−1
= zi−1

]
= 1 ·

k∏
i=1

(
P exp

(
(ti − ti−1)G

))
zi−1,zi

=
k∏
i=1

exp
(
(ti − ti−1)G̃(n)

)
(ξi−1,ψi−1),(ξi,ψi)

=

k∏
i=1

exp
(
(ti − ti−1)(Q(n) ⊕Q(n))

)
(ξi−1,ψi−1),(ξi,ψi)

=
k∏
i=1

(
exp
(
(ti − ti−1)Q(n)

)
⊗ exp

(
(ti − ti−1)Q(n)

))
(ξi−1,ψi−1),(ξi,ψi)

=
k∏
i=1

exp
(
(ti − ti−1)Q(n)

)
ξi−1,ξi

· exp
(
(ti − ti−1)Q(n)

)
ψi−1,ψi

=

k∏
i=1

P
[
K̂nti = ξi

∣∣∣ K̂nti−1
= ξi−1

]
P
[
Ǩnti = ψi

∣∣∣ Ǩnti−1
= ψi−1

]
= P

[
k⋂
i=1

{
(K̂nti , Ǩ

n
ti) = (ξi, ψi)

}]
,
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3.6. Limiting behavior of two coalescents on common graph

therefore the finite dimensional distributions of the process
(
ρ(Znt )

)
t

are the same
as those of (K̂n, Ǩn).

Notice that since all involved spaces are discrete, the function ρ, as well as its
k-fold cartesian product

ρ×k : Hkn → (En × En)k, ρ×k :=
k

×
i=1

ρ

are continuous. By the mapping theorem ([1], Thm 2.7), the function ρ×k respects
weak limits. It therefore holds:

w-lim
N→∞

L
(

(X̂N,nbti/cN c, X̌
N,n
bti/cN c)

k
i=1

)
= w-lim

N→∞
L
(

(ρ(ZN,nbti/cN c))
k
i=1

)
= w-lim

N→∞
L
(
ρ×k((ZN,nbti/cN c)

k
i=1)

)
= L

(
ρ×k((Znti)

k
i=1)

)
= L

(
(ρ(Znti))

k
i=1

)
= L

(
(K̂nti , Ǩ

n
ti)
k
i=1

)
.

Here, we applied definitions 3.2.2, 3.4.3 and the remark 3.4.6 in the first step. The
mapping theorem is used in the third step. Finally, we used the above statement
about the finite dimensional distributions of

(
ρ(Znt )

)
t

in the last step. �

Now we have established that the finite dimensional distributions of two coales-
cents on the same graph converge to those of two independent Kingman’s coales-
cents. However, originally we wanted to prove the convergence of certain Laplace
transforms of the states and holding times representations.

The following lemma will allow us to pass from the convergence of finite dimen-
sional distributions of processes (X̂N,nbt/cN c, X̌

N,n
bt/cN c)t to the weak convergence of the

corresponding states and holding times.

Lemma 3.6.7. Let X̂N,nb−/cN c, X̌
N,n
b−/cN c, K̂

n and Ǩn as previously. For each N ∈ N
denote the states and holding times representations by

(ŜN , ĤN ) := Θ
(
(X̂N,nbt/cN c)t

)
, (ŠN , ȞN ) := Θ

(
(X̌N,nbt/cN c)t

)
,

and moreover, define

(Ŝ∞, Ĥ∞) := Θ(K̂n) , (Š∞, Ȟ∞) := Θ(Ǩn).

Then it holds:

(ŜN , ŠN , ĤN , ȞN )
N→∞
=⇒ (Ŝ∞, Š∞, Ĥ∞, Ȟ∞).

49



3. Coalescents in Fixed Pedigrees

Proof. For this lemma, it is more convenient to consider times T̂Nj and ŤNj instead
of holding times ĤN

j and ȞN
j . Since ĤN

j is defined as difference T̂Nj−1 − T̂Nj (see
definition 3.3.1), and T̂n is always zero, it is enough to show that the weak conver-
gence statement holds for

(ŜN , T̂N ) ≡
(
ŜNj , T̂

N
j−1

)n
j=2

and analogously defined (ŠN , ŤN ). Abbreviate for all N ∈ N ∪ {∞}:

V N := (ŜN , ŠN , T̂N , ŤN ). (3.59)

The idea is to define a semiring A on the space E2(n−1)
n × [0,∞)2(n−1) such that

every open set can be represented as countable union of elements of A, and then
to show that

P [V∞ ∈ A] ≤ lim inf
N→∞

P
[
V N ∈ A

]
(3.60)

holds for all A ∈ A. We abbreviate EN := {V N ∈ A} for all N ∈ N ∪ {∞}.
We will use the family of rectangles aligned to a dyadic grid as A. For each

r ∈ N define Gr := 2−rZ, and set G :=
⋃
rGr. Consider the family Ã of subsets of

E2(n−1)
n × R2(n−1):

Ã :=
{
{(ŝ, š)} × (â, b̂]× (ǎ, b̌] : ŝ, š ∈ En−1

n , â, b̂, ǎ, b̌ ∈ Gn−1
}
.

It contains the empty set, it is obviously stable under finite intersections, and the
relative complement of two boxes from Ã can be represented as a finite union of
smaller pairwise disjoint boxes, therefore it is a semiring ([4], Def. 1.9). It is also
easy to see that any open set can be filled out by countably many boxes from Ã.

From the definition of a semiring it is immediately obvious that the trace

A :=
{
A ∩ E2(n−1)

n × [0,∞)2(n−1) : A ∈ Ã
}

of Ã on the subset E2(n−1)
n × [0,∞)2(n−1) is a semiring on this subset. Furthermore,

it is compatible with the definition of the trace topology: for every open subset U
of E2(n−1)

n × [0,∞)2(n−1), we can find an open subset Ũ of E2(n−1)
n × R2(n−1) such

that U is the trace of Ũ . Any decomposition of Ũ into countably many half-open
2(n − 1)-dimensional intervals from Ã induces a decomposition of U into disjoint
sets from A.

Now we have to show that (3.60) holds for all elements of A. We will investigate
only half-open intervals, the proof for the elements on the boundary of E2(n−1)

n ×
[0,∞)2(n−1) is analogous.

First, notice that if #ŝj 6= j, then P[E∞] = 0, and the inequality (3.60) holds
trivially. Same holds for atypical choices of š. Henceforth, assume that #ŝj =
#šj = j.
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3.6. Limiting behavior of two coalescents on common graph

Fix an arbitrarily small ε > 0. For r ∈ N, consider the event that the distance
between any two jumps of (K̂n, Ǩn) is greater than 2−r:

Fr :=

{
min
s 6=t∈J

> 2−r
}
, (3.61)

(here J denotes the (random) set of times at which the process (K̂n, Ǩn) jumps).
Choose r so large that the probability of Fr becomes greater than 1− ε.

Now we define events DN that rely only on finitely many values of the underlying
processes, but still allow us to reliably detect events EN .

Suppose that for each j ∈ {2, . . . , n} we can find α, β ∈ Gr such that all of the
following conditions are fulfilled:

• (α, β] ⊆ (âj , b̂j ],

• X̂N,nbα/cN c = ŝj ,

• X̂N,nbβ/cN c = ŝj−1.

Then we can be sure that the time T̂Nj−1 lies in the interval (âj , b̂j ] and that ŜNj = ŝj .
Analogous statements are valid for ŤNj and ŠNj for all N ∈ N∪{∞} (with Kingman’s
coalescents for N =∞). In other words, whenever the event

DN :=
⋂

•∈{∧,∨}

n⋂
j=2

⋃
α,β∈Gr

(α,β]⊆(ȧj ,ḃj ]

{
ẊN,nbα/cN c = ṡj , Ẋ

N,n
bβ/cN c = ṡj−1

}
(3.62)

(with K̂nt , Ǩnt instead of X̂N,nbt/cN c, X̌N,nbt/cN c for N = ∞) occurs, the event EN also
occurs, that is: DN ⊆ EN for all N ∈ N ∪ {∞}.

Furthermore, if the event Fr occurs, the distance between any two jumps of the
process (K̂n, Ǩn) is large enough so that we are guaranteed to be able to find α’s
and β’s as above, therefore:

P [Fr ∩ E∞] = P [Fr ∩D∞] .

Together with the estimate

P [Fr ∩ E∞] ≥ P [E∞] + P [Fr] − 1 ≥ P [E∞] − ε

this yields:

P [E∞] ≤ P [Fr ∩ E∞] + ε

= P [Fr ∩D∞] + ε

≤ P [D∞] + ε

= lim
N→∞

P
[
DN

]
+ ε
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3. Coalescents in Fixed Pedigrees

≤ lim inf
N→∞

P
[
EN
]

+ ε.

Here we have used the fdd-convergence proved in 3.6.6 in the next-to-last line.
Since this estimate holds for any epsilon, we obtain (3.60).

By a corollary to the portmanteau theorem ([1] Thm. 2.5), we obtain weak con-
vergence of V N to V∞, and the proof is finished. �

3.7. Limiting behavior of a single coalescent

We now can control the second moment, as discussed right after lemma 3.3.4. As
promised, we now return to the calculation of the expected value. Since this is just
a simpler version of what we did for the second moment, we omit some details.

Proposition 3.7.1. Finite dimensional distributions of the processes XN,nb−/cN c con-
verge to those of Kn as N tends to infinity.

Proof. First, notice that XN,ng+1 does not depend on exact individual and chromosome
indices which XN,n

g assigns to the sample-indices 1. For XN,ng+1, it is also irrelevant
whether two active lineages in the generation g are in the same individual or not.
Since XN,ng+1 depends only on XN,ng , and not on XN,n

g , the process XN,n is actually a
Markov chain. Denote its transition matrix by Π(N,n). Clearly, for all ξ, η ∈ En with
ξ 6= η, it holds: Π

(N,n)
ξη ∈ O(cN ), therefore by lemma 3.5.7 it holds:

lim
N→∞

Π(N,n) = I ,

where I denotes a En × En identity matrix. Let k ∈ N arbitrary, let t1, . . . , tk ∈ [0,∞)
be sorted sequence of times, and ξ1, . . . , ξk ∈ En some partitions. Set t0 := 0 and
ξ0 := ∆. Recall the following well-known identity for matrix exponentials:

lim
N→∞

(
Π(N,n)

)bt/cN c = exp

(
t · lim

N→∞

Π(N,n) − I
cN

)
.

By repeated application of the elementary Markov property, we obtain:

lim
N→∞

P

[
k⋂
i=1

{
XN,nbti/cN c = ξi

}]
=

k∏
i=1

exp

(
(ti − ti−1) · lim

N→∞
c−1
N (Π(N,n) − I)ξi−1,ξi

)
,

therefore it is sufficient to show that G := limN→∞ c
−1
N (Π(N,n) − I) is the same as

the Q-matrix of the Kingman’s coalescent. Let’s consider various constellations of
ξ, η ∈ En.

1Recall that realizations of XN,n
g are functions from [n] to ([N ] × B), wheheas XN,ng is partition-

valued.
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3.7. Limiting behavior of a single coalescent

Case 1: ξ ` η.
It should be pointed out that, unlike in the haploid Cannings model, there are many
different ways to obtain a pair coalescence in the (g+ 1)-th generation. An extreme
example: one could in principle obtain a pair coalescence with k active lineages but
only d(k − 1)/2e distinct individuals in the parent generation.

However, the only asymtotically relevant case is when exactly two lineages hit
the same individual, and every other lineage stays in a separate individual. In this
case, the coalescence probability is Φa(2, 1, . . . , 1)/2. From lemma 3.5.8 we know
that

lim
N→∞

1
2Φa(2, 1, . . . , 1)

cN
= 1 .

In all other cases, the coalescence probability is o(cN ), and therefore negligible.
We obtain Gξη = 1.

Case 2: ξ 6= η, ξ 6` η.
Since there is no way how previously coalesced lineages could separate, if ξ 6≺ η,
then Gξη must be 0.

Assume that ξ ≺ η. It must hold: #η ≤ #ξ − 2. This requires coalescence of
more than two lineages. From lemma 3.5.8, we know that the probability Π

(N,n)
ξη

of such an event is o(cN ), and therefore negligible for N → ∞. We again obtain
Gξη = 0.

Case 3: ξ = η.
Since Π(N,n) is stochastic, each row ofG has to sum up to 0. There are #ξ(#ξ−1)/2
different θ ∈ En such that the condition ξ ` θ applies, therefore

Gξξ = −#ξ(#ξ − 1)/2 = −
(

#ξ

2

)
.

The case analysis shows that G = Q(n), and therefore the proof is finished. �

The following corollary is completely analogous to the lemma 3.6.7.

Corollary 3.7.2. The law of Θ
(
XN,nb−/cN c

)
converges weakly to the law of Θ

(
Kn) as

N tends to infinity.

Proof. There were two crucial properties that made the proof of the lemma 3.6.7
work:

• The underlying process was in some sense monotonous: the number of ac-
tive lineages (in both coalescents) was non-increasing. This enabled us to
detect events EN using events DN , which relied on finitely many values of
the underlying process.

• The holding times of the limiting process were almost certainly positive, and
there were only finitely many jumps. This enabled us to detect events EN

using DN with arbitrary high sensitivity.
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3. Coalescents in Fixed Pedigrees

Here, again, the number of active lineages #XN,nbt/cN c is non-increasing, and the
holding times of the limit process Kn are almost surely positive. Thus, the proof
strategy from 3.6.7 works as previously. �

3.8. Convergence in Skorokhod space

The goal of this section is to show that weak convergence of the states and holding
times representation implies weak convergence in the Skorokhod space.

Fortunately, we get the weak convergence in the Skorokhod space almost for
free: if the underlying states and holding times happen to converge weakly, all we
have to do is to show that the set of discontinuities of Θ−1 (denoted by DΘ−1) is a
null set with respect to the limit measure L(Θ(Kn)).

Lemma 3.8.1 (Continuity of Θ−1). For the set DΘ−1 of discontinuities of Θ−1 it
holds:

DΘ−1 ⊆
(
En−1
n × (0,∞)n−1

)c
,

in other words: Θ−1 is continuous on En−1
n × (0,∞)n−1.

Proof. First, we should choose a specific metrization of En−1
n × [0,∞)n−1. We use

a combination of the discrete metric ddiscr on En−1
n

ddiscr(x, y) :=

{
1 if x 6= y

0 if x = y

and the ‖−‖∞-norm on [0,∞)n−1 to define the metric d× on the product space as
follows:

d×
(
(x, t), (y, s)

)
:= ddiscr(x, y) ∨ ‖t− s‖∞ .

Now, fix a point (S,H) ≡ (Si, Hi)
n
i=2 ∈ En−1

n × (0,∞)n−1 and an arbitrarily small
ε > 0. Define Tk for k ∈ [n] analogously to the construction in 3.3.1, and moreover,
define an additional value T0:

Tk :=

n∑
i=k+1

Hi T0 :=

n∑
i=2

Hi + 1. (3.63)

Denote the minimum grid-width by h := minni=2Hi. Choose a positive δ

δ :=
1

2
∧ h

3(n− 1)
∧ h(1− e−ε)

2(n− 1)2
, (3.64)

and let (Q,G) ∈ En−1
n × [0,∞)n−1 be another list of states and holding times such

that d×
(
(S,H), (Q,G)

)
< δ.

First, notice that since the distance is smaller than 1, the lists of states S and Q
must be equal.
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3.8. Convergence in Skorokhod space

Define times Vk analogously to Tk by Vk :=
∑n

i=k+1Gi, and consider the offsets
ck := Vk − Tk for all k ∈ [n]. It holds:

|ck| = |Vk − Tk| ≤
n∑

i=k+1

|Hi −Gi| ≤ (n− 1) ‖H −G‖∞ ,

from this together with the choice of δ (3.64) we obtain two estimates:

|ck| <
h

3
, (3.65)

|ck| <
h(1− e−ε)

2(n− 1)
. (3.66)

for each k ∈ [n].
To prove that dSk

(
Θ−1(S,H),Θ−1(Q,G)

)
< ε, it is sufficient to find a strictly in-

creasing λ ∈ Λ (as in definition 2.2.1) with γ(λ) < ε and

Θ−1(S,H) = Θ−1(Q,G) ◦ λ,

because in this case, the integral part in the definition of the Skorokhod metric (2.6)
simply vanishes. We can build such a λ by adding little corrections to the identity
function. For any three real numbers a, b, c with a < b < c, define the general tent
function

Λ(a,b,c)(t) :=


0 for t ∈ (−∞, a]
t−a
b−a for t ∈ (a, b]
c−t
c−b for t ∈ (b, c]

0 for t ∈ (c,∞)

,

and abbreviate Λk := Λ(Tk+1,Tk,Tk−1) for k ∈ [n−1]. Notice that Λk are differentiable
everywhere except at the finitely many points {Tk}nk=0, and the maximum absolute
value of the slope is at most h−1. Using these tent functions, we now can construct
the function λ as follows:

λ := Id[0,∞) +

n−1∑
i=1

ciΛ
i.

The estimate (3.65) ensures that on each interval between Tk’s the first derivative
of λ stays within the range[

1− 2 · h
3
· h−1, 1 + 2 · h

3
· h−1

]
= [1/3, 5/3],

so that λ is strictly monotonous, and therefore indeed an element of Λ. The other
estimate (3.66) gives us another bound for the deviation of the first derivative from
the constant 1 function. For each τ ∈ [0,∞) \ {Tk}nk=0, it holds:

∣∣λ′(τ)− 1
∣∣ ≤ n−1∑

k=1

2 |ck|h−1 < 2(n− 1)h−1h(1− e−ε)

2(n− 1)
= 1− e−ε,
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3. Coalescents in Fixed Pedigrees

therefore, for each a, b ∈ [0,∞) with a < b we obtain:∣∣∣∣λ(b)− λ(a)

b− a
− 1

∣∣∣∣ ≤ sup
τ 6=Tk

∣∣λ′(τ)− 1
∣∣ < 1− e−ε,

hence
λ(b)− λ(a)

b− a
∈
(
1− (1− e−ε), 1 + (eε − 1)

)
= (e−ε, eε),

and finally ∣∣∣∣log
λ(b)− λ(a)

b− a

∣∣∣∣ < ε.

Since this estimate holds for all a, b with a < b, we obtain γ(λ) < ε. As described
above, this implies that the Skorokhod distance is also smaller than ε, thus we get
continuity at (S,H). Since (S,H) could be chosen arbitrarily from En−1

n × [0,∞)n−1,
the proof is complete. �

Corollary 3.8.2 (Weak convergence in D↓([0,∞), En)). If (YN )N is a sequence of
random variables with values in En−1

n × [0,∞)n−1 such that L(YN ) converge weakly
to L

(
Θ(Kn)

)
as N →∞, then the laws of Θ−1(YN ) converge weakly to L(Kn).

Proof. Times between jumps of the Kingman’s coalescent are exponentially dis-
tributed, and therefore almost surely positive. Consequently, DΘ−1 is a null set
with respect to the measure L

(
Θ(Kn)

)
. Thus, the claim follows from the mapping

theorem. �

3.9. Putting it all together

In this section, we combine all the building blocks from the previous sections. Be-
fore we prove our central theorem 3.2.5, we interject yet another helper lemma
that will spare us some juggling with the lengthy expressions denoting our random
measures.

Lemma 3.9.1. Let E be some finite space, d ∈ N. Let (µl)l be a sequence of
M1(E × [0,∞)d)-valued random variables and µ a measure on E × [0,∞)d. Sup-
pose that the following two conditions hold:∥∥E [LTµl(−,−)] − LTµ

∥∥
∞

l→∞−→ 0 (3.67)
∞∑
i=1

∥∥Var [LTµl(−,−)]
∥∥
∞ ≤ ∞, (3.68)

where E[f(−,−)] denotes the function (y, λ) 7→ E[f(y, λ)] (similarly for Var). Then
it holds:

P
[
µl

l→∞
=⇒ µ

]
= 1.
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3.9. Putting it all together

Proof. By the proposition 2.3.6, it is sufficient to show that the event {LTµl
l→∞−→

LTµ} has probability 1. Since Laplace transforms are continuous, it is sufficient to
check the pointwise convergence on some dense subset of E×[0,∞)d, for example
on A := E × (Q ∩ [0,∞))d. Fix (y, λ) ∈ A. Abbreviate Vl := LTµl(y, λ), V :=
LTµ(y, λ) (notice that Vl are random variables, while V is just a real constant). We
can express the event of non-convergence at (y, λ) as follows:{

Vl
l→∞−→ V

}c
=
⋃
k∈N

⋂
n∈N

⋃
m>n

{
|Vl − V | >

1

k

}
(3.69)

=
⋃
k∈N

lim sup
n

{
|Vn − V | >

1

k

}
.

Fix k ∈ N. By the assumption, E[Vl] converges to V , therefore we can find L so
large that

|E [Vl] − V | <
1

2k
for all l beyond L. Thus, from the triangle inequality, we get for all l large enough:

|Vl − V | ≤ |Vl − E [Vl]|+ |E [Vl] − V | < |Vl − E [Vl]|+
1

2k
,

and thus {
|Vl − V | >

1

k

}
⊆
{
|Vl − E [Vl]| ≥

1

2k

}
.

The probability of the event on the right hand side can be bounded using the Cheby-
shev inequality ([4] 5.11):

P
[
|Vl − E [V ]| ≥ 1

2k

]
≤ 4k2Var [Vl] .

From this and from the initial assumption (3.68) about the summability of variances
we get the following estimate:

∞∑
l=1

P
[
|Vl − V | >

1

k

]
≤ L+

∞∑
l=L+1

P
[
|Vl − E [Vl]| ≥

1

2k

]

≤ L+ 4k2
∞∑

l=L+1

Var [Vl]

<∞.

Application of the Borel-Cantelli lemma ([4], Thm. 2.7) yields

P
[
lim sup

n

{
|Vn − V | >

1

k

}]
= 0,

and since countable unions of null sets have probability 0, the event in (3.69) almost
never occurs. The argument did not depend on the choice of (y, λ), therefore the
statement is true for all elements of the dense subset A. �
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Now we can finally prove our main theorem.

Proof of Theorem 3.2.5. For each population size N ∈ N, consider the two con-
ditionally independent random processes (X̂N,nbt/cN c)t and (X̌N,nbt/cN c)t (defined as in
section 3.4) on a common graph GN . Let

(ŜN , ĤN ) = Θ
(
X̂N,nb−/cN c

)
, (ŠN , ȞN ) = Θ

(
X̌N,nb−/cN c

)
be the corresponding random vectors of states and holding times of both pro-
cesses. In 3.6.6 we have established that the finite dimensional distributions of
(X̂N,nbt/cN c, X̌

N,n
bt/cN c)t converge to those of two independent Kingman’s coalescents K̂n

and Ǩn. From the lemma 3.6.7, we know that this carries over to the correspond-
ing states and holding times, so that ((ŜN , ĤN ), (ŠN , ȞN )) converges weakly to
(Θ(K̂n),Θ(Ǩn)). Since the function ((ŝ, ĥ), (š, ȟ)) 7→ ((ŝ, š), ĥ+ ȟ) is continuous, by
the mapping theorem, ((ŜN , ŠN ), ĤN + ȞN ) also converges weakly. Since weak
convergence implies pointwise convergence of Laplace transforms (remark 2.3.2),
we obtain:

LTL((ŜN ,ŠN ),ĤN+ȞN ) ((y, y), λ)
N→∞−→ LTL(Θ(K̂n))(y, λ) · LTL(Θ(Ǩn))(y, λ) .

Plugging this together with the results from 3.7.2 into the lemma 3.3.4, we obtain

Var

[
LTL(Θ(XN,nb−/cN c

)|GN )
(y, λ)

]
N→∞−→ 0 (3.70)

for each (y, λ) ∈ En × [0,∞)d. Moreover, since all holding times of the Kingman’s
coalescent are almost surely positive, the corollary 2.3.7 tells us that the above
convergence (3.70), as well as the convergence

E
[
LTL(Θ(XN,nb−/cN c

)|GN )
(y, λ)

]
N→∞−→ LTL(Θ(Kn))(y, λ) (3.71)

is uniform in (y, λ).
Now let (Nm)m be some strictly increasing sequence of integers. We can thin out

this sequence and find a sub-subsequence (Nml)l such that

∞∑
l=0

∥∥∥∥∥Var

[
LT
L(Θ(X

Nml
,n

b−/cNml
c)|G

Nml )
(−,−)

]∥∥∥∥∥
∞

<∞

becomes summable. By the previous lemma 3.9.1 (with d = n − 1, E = En−1
n ,

random measures µl = L(Θ(X
Nml ,n

b−/cNml c
)|GNml ) and µ = L(Θ(Kn))), it holds:

P
[
L
(

Θ

(
X
Nml ,n

b−/cNml c

)∣∣∣∣GNml) l→∞
=⇒ L (Θ (Kn))

]
= 1.
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3.9. Putting it all together

Again, because all holding times of the Kingman’s coalescent are almost surely
positive, it holds (with set of discontinuities DΘ−1 as in 3.8.1):

P [Θ (Kn) ∈ DΘ−1 ] = 0.

Therefore, by the corollary 3.8.2 we obtain:

P
[
L
(
X
Nml ,n

b−/cNml c

∣∣∣∣GNml) l→∞
=⇒ L (Kn)

]
= 1

To emphasize that this is just the almost sure convergence with respect to the Lévy-
Prokhorov metric dLP, we can also state it as follows:

P
[
dLP

(
L
(
X
Nml ,n

b−/cNml c

∣∣∣∣GNml) ,L (Kn)

)
l→∞−→ 0

]
= 1.

Therefore, for each subsequence we can find an almost surely dLP-convergent
sub-subsequence, and the weak limit is always the same, namely L(Kn). This
is equivalent to convergence in probability (see [4] Cor. 6.13) with respect to the
Lévy-Prokhorov metric, thus the theorem holds. �
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4. Simulations

In the previous chapter, we have proved that the laws of coalescents on fixed pedi-
grees converge stochastically (w.r.t. Lévy-Prokhorov metric) to the Kingman’s coa-
lescent. This is a qualitative statement: it tells us that, for large enough population
size N , the law of the coalescent on a fixed pedigree probably won’t look much
different from the standard coalescent. However, it does not tell us anything about
the speed of convergence.

In this chapter, we present a simulation framework and experimental results that
will give us some rough idea of how quickly the above mentioned laws converge to
the Kingman’s coalescent. Moreover, we investigate populations with more complex
family structures, as well as populations of varying size.

This chapter is structured as follows. In the section 4.1, we briefly describe the
framework that we used for simulations. In the section 4.2, we present various
family structures that can be represented in our framework. In the last section 4.3,
we investigate the influence of varying population size.

4.1. Simulation framework

The basic idea of the experiment is very simple: we generate a random pedigree,
sample multiple coalescents within this fixed pedigree, collect some statistics about
the sampled coalescents, and then compare the results with what we would expect
from the Kingman’s coalescent.

The model used for simulations is more general then the model used in the proof.
Instead of N individuals per generation, we consider N families per generation.
Here, we use the word “family” in the sense of “parental home”, excluding the chil-
dren (they belong to the next generation). Each of those families can have arbitrarily
complex structure, and consist of multiple diploid and haploid individuals of differ-
ent sexes. The families within the same population can also vary in size. This
enables us to model a wide range of family structures, from monogamous couples
of diploid individuals (mammals, birds), to colonies of eusocial insects (like ants,
bees, wasps).

Generation of a random pedigree can be subdivided into three steps:

1. Sample a sequence (Ng)g, which for each g ∈ N0 determines the number of
families in the generation g (the number of families can vary over time, but
until section 4.3 we assume that it is just a constant N ).
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4. Simulations

2. For each g, generate a population consisting of Ng families (in some models,
there will be more than just one type of family).

3. For each individual, choose a parent family from the previous generation.

Once the random pedigree is generated, we simulate the coalescents using the
information about parentship relations from the pedigree, as well as additional
source of Mendelian randomness. The exact mechanism of the Mendelian ran-
domness is left abstract, we can easily plug in different implementations for various
reproduction mechanisms. The details are somewhat convoluted (this is the main
reason why we used a simpler model in our proof), multiple levels of indirection
are necessary to keep the mechanism sufficiently general, the interested reader is
referred to the source code in the appendix B 1.

The simulated random coalescents are transformed into states and holding times
representation, which then can then be used to collect arbitrary statistics.

We used the object-functional language Scala [11] for the implementation. The
two most important reasons for this choice were as follows.

First, the OOP-features with a sufficiently expressive type system allow us to
implement a generic data structure that is reminiscent of the Giry-monad [3]. This
in turn enables us to conveniently compose distributions and to compute certain
probabilities exactly, without reverting to sampling.

Second, functional features are helpful when we have to deal with potentially in-
finite random structures that look like inverse limits of some finite substructures.
Since the language does not force us to treat data and algorithms differently, we
can easily define random structures that are represented by both sampled data
and an algorithm that knows how to generate more data on demand. In particular,
this allows us to define potentially infinite random pedigrees. We never specify how
many generations we need: if a random coalescent within a pedigree happens to
need more generations to reach its MRCA, then the pedigree is extended automat-
ically. Thus, we can avoid some implementation problems described by Wakeley
et al. [12], for example, we do not have to make multiple passes through the same
finite piece of pedigree if a coalescent turns out to need more steps to converge to
the trivial partition.

4.2. Complex family structures

We consider four different models: a reinterpretation of our panmictic diploid model
from the previous chapter (we call it “Meme”-model, in a moment we will explain
why), human monogamous families (inspired by the “Swedish families” dataset con-
sidered by Wakeley et al. [12]), polygynous fish, and colony structures of eusocial
insects.

1 The method FamilyStructure.chromosomeInheritance() is responsible for the Mendelian
randomness.
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4.2. Complex family structures

4.2.1. Panmictic diploid model as monogamous haploid model

At first glance, the panmictic diploid model used in the proof does not fit into our
framework. However, we can simply assign different meaning to certain entities
in our panmictic model to obtain an equivalent model with monogamous families
of haploid individuals. The idea is to reinterpret a diploid individual as a couple
consisting of two haploid individuals. Table 4.1 shows the analogy between the two
models.

Panmictic diploid model Monogamous haploid model

Individual with index i ∈ [N ] Couple with index i

First chromosome of individual i Father’s meme

Second chromosome of an individual Mothers’s meme

First parent chosen at random Father’s parental home chosen at ran-
dom

Second parent chosen at random Mother’s parental home chosen at ran-
dom

Number of chromosomes passed to
the next generation by i-th individual

Number of children of i-th couple.

Table 4.1.: Analogy between the panmictic haploid model and the monogamous diploid
model.

This model does not seem to make much sense in the context of genetics, how-
ever, it seems appropriate to describe the propagation of a meme through gener-
ations. For example, one could think of some idea or technique that each child
learns either from his father or from his mother. The Figure 4.1 shows all possible
offspring of a family.

We generated 12 different pedigrees for each number of families N = 10, 50, 100,
1000, and sampled 10000 coalescents in each pedigree. We plotted the empirical
cumulative distribution functions of the holding times H2 together with the cumula-
tive distribution function of the Exp1-law. The Figures 4.3 throughout 4.6 give an
impression of how the laws on fixed pedigrees differ from the Exp1-law. We can ob-
serve that some significant difference is visible for the tiny population size N = 10,
but already for N = 50 the laws on fixed pedigrees are difficult to tell apart from
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4. Simulations

Figure 4.1.: Meme inheritance. On the
left, a family with a haploid male and a
haploid female is shown. On the right,
the top row shows both equiprobable
genotypes of male offspring. The bot-
tom row shows two equiprobable geno-
types of female offspring.

Figure 4.2.: Mendelian inheritance. On the left,
a family with a diploid male and a diploid female
is shown. On the right, the top row shows all
equiprobable genotypes of male offspring. The
bottom row shows all equiprobable genotypes of
female offspring.

the Exp1-law. However, the error seems to decay rather slowly: the improvements
between N = 50 and N = 1000 are not that obvious.
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Figure 4.3.: Meme-model, tiny N
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Figure 4.4.: Meme-model, small N
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Figure 4.5.: Meme-model, medium N
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Figure 4.6.: Meme-model, large N

4.2.2. Monogamous families of diploid individuals

Our second model is the most basic model that is applicable to human genetics.
We consider disjoint populations of N families, where each family consists of one
diploid male and one diploid female. Each individual inherits one chromosome from
its father, and one from its mother. Figure 4.2 shows all possible genotypes of the
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4.2. Complex family structures

offspring.
If we consider the position of a lineage within a family, it is clear that the lin-

eage spends roughly one fourth of the time in each chromosome. Thus, the pair
coalescence probability cN is readily computed:

cN =
1

4
Φ1(2).

The results of the experiments look very similar to those shown in Figures 4.3 to
4.6, the plots can be found in appendix A.

4.2.3. Polygynous fish

Under the assumption of the Wright-Fisher model for the number of offspring of
each couple, the effective population size in the previous two models is just the total
number of all chromosomes contained in the population. We wanted to experiment
with a model where the effective population size is not trivial.

One such example is provided by certain fish species that live in single-male
multiple-female groups [10] (see Figure 4.7). Suppose thatN groups (with a varying
number of females) inhabit N separate breeding sites. It is reasonable to assume
that an observer can track the migration of grown-up individuals (that is, determine
which site an adult fish comes from), but cannot determine the mother of a fish
(because the tiny eggs are released into water, and cannot be attributed to a unique
female). Thus, a fixed pedigree contains only a pointer to the place of birth for every
fish. This pointer uniquely determines the father, but the mother has to be chosen
uniformly among all females of a group during the coalescent simulation.

Figure 4.7.: Polygynous fish. On the left:
polygynous group with one male and two
females. On the right, the top row shows
equiprobable genotypes of male offspring.
The bottom row shows equiprobable geno-
types of female offspring.

Figure 4.8.: Honeybee colony. On the left:
queen and four drones that found a colony.
On the right: the top row shows possi-
ble genotypes of new drones. The bottom
row shows equiprobable genotypes of young
queens.

Since every individual inherits one chromosome from the father, and one from
the mother, the probability p that a lineage runs through a male fish becomes 1/2
after a single generation. Since all individuals are diploid, the pair coalescence
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4. Simulations

probability is

cN =

(
p2 1

2
+ (1− p)2 1

2
E[F−1]

)
ΦN

1 (2) =
1

8

(
1 + E[F−1]

)
ΦN

1 (2),

where F is the random number of females per breeding site.
For our experiments, we chose the number F of females per site uniformly from
{1, . . . , 5} (independently for each family), and generated pedigrees for N = 10, 50,
100, and 250. As expected, the results were again similar to those for the Meme-
model, see Figures A.5-A.8 in appendix A.

4.2.4. Eusocial insects

In all models considered so far, both males and females inherited their genome
in the same way. Eusocial insects (like ants, bees or wasps) provide an example
where the inheritance mechanisms for queens (diploid fertile females) and drones
(haploid fertile males) are different.

When it’s time to found a new colony, queens of the giant honey bee (Apis dor-
sata) mate with multiple drones from other colonies [5]. Then they begin to lay
eggs. Fertilized eggs develop either into new queens, or infertile workers. Thus,
young queens and workers inherit half of their chromosomes from the queen, and
half of the chromosomes from one of the drones. Unfertilized eggs develop into
male haploid drones, which therefore have to inherit their entire genome from the
queen. This is illustrated in the Figure 4.8.

To obtain the correct time scaling, we need the pair coalescence probability. Let
pg denote the probability that a lineage in the generation g goes through a queen.
From the above description of the inheritance mechanism, we obtain:

pg+1 = pg
1

2
+ (1− pg) · 1.

This probability rapidly converges to the equilibrium value p = 2/3. Thus, the pair
coalescence probability is

cN =

(
p2 1

2
+ (1− p)2E[D−1]

)
ΦN

1 (2) =
1

9

(
2 + E[D−1]

)
ΦN

1 (2),

where D is the random number of drones that contribute to the genome of a colony.
We conducted our experiments with D chosen uniformly from {5, . . . , 10}. The

results were similar to those of the previous model.

4.3. Varying population size

Constant population size (or rather, constant number of families N ), seems to be a
rather unrealistic assumption. Therefore, we wanted to find out whether variation in
the number of families influences the distribution of MRCA-times.
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Figure 4.9.: Population size (relative to N ), plotted against the intrinsic time. The average
number of families is N = 1000, relative variation is 0.95, that is, the bounded random walk
takes values between 50 and 1950. Notice that the random walk seems squashed at the
top, and stretched at the bottom: this is because the time seems to pass faster when the
population size is small.

Our implementation allows to make the number of families N time dependent,
and to plug in arbitrary time-discrete stochastic processes (Ng)g instead of the
constant function constN . We use a bounded time-discrete random walk with real-
valued increments as our varying population size. The random walk is constrained
to the range

[N(1− v), N(1 + v)],

where N is the average number of families, and v ∈ (0, 1) is an additional config-
urable parameter. The increments of the random walk are scaled with

√
N in order

to keep the relative variance roughly the same for all N .
Of course, we had to rescale the time appropriately: since the number of families

varies, the pair coalescence probability does not stay constant either, and thus the
intrinsic time does not always run at the same pace. Instead of the processes
(XN,nbt/cN c)t, we therefore considered processes (XN,nκ(t))t, where

τ(g) :=

g∑
k=1

cNg

is an increasing, real-valued, graph-dependent stochastic process that we shall call
the intrinsic time, and

κ(t) := inf {g ∈ N0 : τ(g) ≥ t}

is a (random) function that distorts the time in such a way that the resulting process
seems to “live on the same time-scale” as the standard Kingman’s coalescent.
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4. Simulations

The Figure 4.9 shows what the process (Ng)g can look like.
We repeated our experiments with all previous models with same parameters, but

with population size Ng varying between 0.5 ·N and 1.5 ·N . The results once again
confirmed the robustness of the Kingman’s coalescent: the ECDF’s still looked just
like those of the standard Kingman’s coalescent. All plots can be found in appendix
A.
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5. Conclusion

We began by pointing out a discrepancy between the assumptions in the derivation
of the Kingman’s coalescent, and certain real world problems, for which the King-
man’s coalescent is used as a model. In particular, the way Kingman’s coalescent
is used to describe gene genealogies in fixed pedigrees seemed unjustified.

We reframed the problem as a statement about random coalescents in fixed pedi-
grees, and formulated our main quenched limit theorem.

The overall strategy was to trade the conditional expectations for a much more
complicated Markov chain in a “two times more complicated” state space. This
more complicated Markov chain described two coalescents on the same random
graph.

These two coalescents occasionally interacted with each other, but always sep-
arated quickly. The separation of time scales approach enabled us to separate the
short-lived interactions from the actual coalescence events, which took place on a
much larger time scale. Then we could prove that for increasingly large populations
sizes, the finite dimensional distributions of the two coalescents looked more and
more like those of two independent Kingman’s coalescents.

This convergence carried over onto the states and holding times representa-
tion, which in turn could be transformed into weak convergence in the Skorokhod
space. Uniform convergence of Laplace-transforms allowed us to thin out certain
sequences of random variables, and show that the weak convergence in the Sko-
rokhod space almost surely occurred for sub-subsequences, which was equivalent
to the weak-stochastic convergence, which we used in our theorem.

We have also verified the result by running simulations. Moreover, our flexible
simulation framework allowed us to experiment with much more complex family
structures and varying population sizes. In all cases, the laws of coalescents on
fixed graphs seemed to converge to the law of the Kingman’s coalescent.

We conclude that Kingman’s coalescent is an appropriate model for describing
gene genealogies in fixed pedigrees, as long as there is proper Mendelian random-
ness, and as long as the underlying pedigree is sufficiently well-behaved.
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A. Plots

This appendix contains results of the experiments conducted in chapter 4. As one
would hope, all plots look essentially the same, confirming the robustness of the
Kingman’s coalescent model.

A remark on the nomenclature. During the implementation phase, we called the
diploid monogamous model “Duke”, having in mind noble men and women living
in a fixed number N of available castles, with a long tradition of writing down their
family history. Furthermore, we called our model for eusocial insects “Ants” rather
than “Bees”, which would have been more appropriate.
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Figure A.1.: Duke, tiny N
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Figure A.2.: Duke, small N
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Figure A.3.: Duke, medium N

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

time

Duke N=1000

Figure A.4.: Duke, large N
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Figure A.5.: Fish(1, 5), tiny N
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Figure A.6.: Fish(1, 5), small N
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Figure A.7.: Fish(1, 5), medium N
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Figure A.8.: Fish(1, 5), large N
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Figure A.9.: Ants(5, 10), tiny N
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Figure A.10.: Ants(5, 10), small N
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Figure A.11.: Ants(5, 10), medium N
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Figure A.12.: Ants(5, 10), large N
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Figure A.13.: Meme, tiny N (varying)
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Figure A.14.: Meme, small N (varying)
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Figure A.15.: Meme, medium N (varying)
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Figure A.16.: Meme, large N (varying)
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Figure A.17.: Duke, tiny N (varying)
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Figure A.18.: Duke, small N (varying)
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Figure A.19.: Duke, medium N (varying)
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Figure A.20.: Duke, large N (varying)
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Figure A.21.: Fish(1, 5), tiny N (varying)
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Figure A.22.: Fish(1, 5), small N (varying)
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Figure A.23.: Fish(1, 5), medium N (vary-
ing)
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Figure A.24.: Fish(1, 5), large N (varying)
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Figure A.25.: Ants(5, 10), tiny N (varying)
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Figure A.26.: Ants(5, 10), small N (varying)
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Figure A.27.: Ants(5, 10), N ∈ [50, 150]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

time

Ants(5,10) N=250 (varying)

Figure A.28.: Ants(5, 10), large N (varying)
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B. Source code

This appendix includes the entire code that has been used to run the experi-
ments with random coalescents on fixed pedigrees. The language is Scala (version
2.11.2). The code can be git-cloned or downloaded from https://github.
com/tyukiand/coalescentSimulation.

1 /* [INDEX]
2
3 Overview......................................................................25
4 Usage.........................................................................47
5 Giry-Monad as 8 Distribution 8 trait...........................................100
6 Stochastic processes and Markov chains.......................................482
7 Statistics...................................................................592
8 Partitions...................................................................630
9 Random populations...........................................................668

10 Random pedigrees.............................................................779
11 Coalescents in random pedigrees..............................................955
12 States and holding times representation.....................................1103
13 Meme model..................................................................1167
14 'Duke' model (diploid, single locus, one male, one female)..................1198
15 Polygynous fish model.......................................................1244
16 Alien-ants model............................................................1320
17 Code formatting.............................................................1413
18 Parameter parsing...........................................................1476
19 Entry point, running the experiment.........................................1697
20 Sanity checks for theoretical formulas......................................1962
21
22 [/INDEX] */
23
24 /* #############################################################################
25 [!] Overview
26 ###########################################################################*/
27
28 // This software can be used to simulate random coalescents in fixed pedigrees.
29
30 //
31 // The script is organized as follows:
32 // - First, we define some general data structures that are helpful for dealing
33 // with distributions and stochastic processes
34 // - Then we define a generic model of coalescent in random environment,
35 // with the underlying model of Mendelian randomness left abstract
36 // - We proceed by defining four concrete family structures
37 // - Then there are some facilities for generating help and formatting code
38 // - Finally, the parameters are parsed, and the requested experiments are run
39
40 /*
41 *
42 * @author Andrey Tyukin
43 * @date 2015-06
44 */
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45
46 /* #############################################################################
47 [!] Usage
48 ###########################################################################*/
49
50 /*
51 * We wanted to minimize the effort that is necessary to get this software
52 * running, and we did so by cramming everything into a single stand-alone
53 * script and avoiding any dependencies.
54 *
55 * This is a stand-alone script that can be executed with the
56 * Scala-interpreter. Assuming that you have Unix/Linux-like environment
57 * with a Scala-interpreter,
58 * all you have to do is to 8 cd 8 into the directory that contains the script,
59 * and issue the following command:
60 * {{{
61 * scala coalescentSimulation.scala --help
62 * }}}
63 * This will display the list of available options and show what a typical
64 * call to this software might look like.
65 *
66 * Here is how one can launch simulations:
67 * {{{
68 * scala coalescentSimulation.scala \
69 * -p 50 -N 100 --num-families-variation 0.8 --model 'Fish(2,5)' \
70 * -c 10000 -n 2 --exp-1-cdf --mrca-ecdf --track-progress --verbose
71 * }}}
72 * The above options mean: simulate 50 different pedigrees with 20-180
73 * fish-families with 2-5 females per family in each generation;
74 * On each pedigree, simulate 10000 coalescents per pedigree with sample size 2
75 * and print the emprical ECDF for each pedigree in the end. Show CDF of Exp_1
76 * for comparison. Track progress, add experiment description to output.
77 *
78 * Less typical application might look as follows:
79 * {{{
80 * scala coalescentSimulation.scala \
81 * -p 1 -N 1000 --num-families-variation 0.9 --model Meme \
82 * --only-populations --verbose
83 * }}}
84 * This would shown only population development, plotted against intrinsic time.
85 *
86 * In case you happen to run out of memory, you have to pass an option to the
87 * JVM used by Scala:
88 * {{{
89 * scala -J-Xmx2048m coalescentSimulation <optionsAsPreviously>
90 * }}}
91 */
92
93 import scala.math._
94 import scala.util.Random
95 import scala.collection.immutable.{Vector}
96 import scala.reflect.ClassTag
97
98
99 /*##############################################################################

100 [!] Giry-Monad as 8 Distribution 8 trait
101 ############################################################################*/
102
103 /**
104 * Implementation of the Giry-monad.
105 */
106 trait Distribution[X] { outer =>
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107 /** Generates a random realization */
108 def sample: X
109
110 /** Integrates real-valued function 8 f 8 exactly */
111 def integral(f: X => Double): Double
112
113 /** Integrates a real-valued function 8 f 8 approximately */
114 def approxIntegral(f: X => Double, reps: Int = 1000): Double = {
115 // the default implementation is a very simple Monte-Carlo method
116 var sum = 0d
117 var i = 0
118 while (i < reps) {
119 sum += f(sample)
120 i += 1
121 }
122 sum / reps
123 }
124
125 import Distribution.charFct // defined further below
126
127 /** Computes probability of an event,
128 * this is just integration of characteristic function
129 */
130 def prob(event: X => Boolean): Double = integral(charFct(event))
131
132 def approxProb(event: X => Boolean): Double = integral(charFct(event))
133
134 /** Pushforward probability measure */
135 def map[Y](f: X => Y): Distribution[Y] = new Distribution[Y] {
136 def sample = f(outer.sample)
137 def integral(g: Y => Double) = outer.integral{ x => g(f(x)) }
138 }
139 /** Multiple step random experiment */
140 def flatMap[Y](markovKernel: X => Distribution[Y]): Distribution[Y] =
141 new Distribution[Y] {
142 def sample = markovKernel(outer.sample).sample
143 def integral(f: Y => Double) = outer.integral{
144 x => markovKernel(x).integral(f)
145 }
146 }
147 /** Product with some other, 8 Y 8 -valued distribution */
148 def zip[Y](other: Distribution[Y]): Distribution[(X,Y)] =
149 new Distribution[(X,Y)] {
150 def sample = (outer.sample, other.sample)
151 // Fubini
152 def integral(f: ((X, Y)) => Double) = outer.integral{
153 x => other.integral{ y => f((x, y)) }
154 }
155 }
156 /** 8 n 8 -fold product with itself */
157 def pow(n: Int): Distribution[Vector[X]] = new Distribution[Vector[X]] {
158 def sample = {
159 (for (i <- 1 to n) yield outer.sample).toVector
160 }
161 def integral(f: Vector[X] => Double) = {
162 // Iterated fubini
163 def integratePartiallyApplied(
164 dim: Int, pa: Vector[X] => Double
165 ): Double = {
166 if (dim == 0) {
167 // all arguments are already plugged in,
168 // 8 pa 8 is a function that takes empty vector and returns a constant
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169 pa(Vector())
170 } else {
171 // plug in one more variable, compute inner integral
172 outer.integral{
173 (x: X) => integratePartiallyApplied(dim - 1, {v => pa(v :+ x)})
174 }
175 }
176 }
177 integratePartiallyApplied(n, f)
178 }
179 }
180
181 /** Infinite repetition of the same experiment */
182 def repeat: StochasticProcess[X] = new StochasticProcess[X] {
183 def sample: Stream[X] = outer.sample #:: sample
184 /**
185 * Strangely enough, this actually works, but only as long as
186 * 8 f 8 is guaranteed to look only at finitely many values.
187 * If it looks only "almost surely" at finitely many values, the
188 * method does not terminate.
189 */
190 def integral(f: Stream[X] => Double): Double = {
191 (for {
192 head <- outer
193 tail <- outer.repeat
194 } yield head #:: tail).integral(f)
195 }
196 }
197
198 /**
199 * This distribution conditioned on occurrence of an event of
200 * positive probability.
201 *
202 * Can get very slow if the probability of 8 event 8 is low.
203 */
204 def filter(event: X => Boolean): Distribution[X] = new Distribution[X] {
205 def sample = {
206 val proposal = outer.sample
207 if (event(proposal)) proposal else sample
208 }
209 val eventProbability = prob(event)
210 def integral(f: X => Double) = outer.integral{
211 x => f(x) * charFct(event)(x)
212 } / eventProbability
213 }
214 }
215
216 object Distribution {
217 /** Just a formality to make the definition of the Giry-monad complete */
218 def unit[X](x: X) = Dirac(x)
219
220 /** Transforms predicates into characteristic functions */
221 def charFct[X](event: X => Boolean): (X => Double) = {
222 x => if (event(x)) 1.0 else 0.0
223 }
224 }
225
226 /** Dirac measure (assigns probability 8 1 8 to a single outcome) */
227 case class Dirac[X](constant: X) extends Distribution[X] {
228 def sample = constant
229 def integral(f: X => Double) = f(constant)
230 }
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231
232 /** Coin flip with two outcomes, 8 true 8 or 8 false 8 */
233 case class Bernoulli(p: Double = 0.5) extends Distribution[Boolean] {
234 private val rnd = new Random
235 def sample = rnd.nextDouble < p
236 def integral(f: Boolean => Double) = p * f(true) + (1-p) * f(false)
237 }
238
239 /** Same as mapped 8 Bernoulli 8 */
240 case class GenBernoulli[X](t: X, f: X, p: Double = 0.5) extends Distribution[X]{
241 private val rnd = new Random
242 def sample = if (rnd.nextDouble < p) t else f
243 def integral(g: X => Double) = p * g(t) + (1-p) * g(f)
244 }
245
246 /** Uniform distribution on intervals of integers */
247 case class IntUniform(minIncl: Int, maxExcl: Int) extends Distribution[Int] {
248 private val size = maxExcl - minIncl
249 private val rnd = new Random
250 def sample = minIncl + rnd.nextInt(size)
251 def integral(f: Int => Double) =
252 (for (i <- minIncl until maxExcl) yield f(i)).sum / size
253 }
254
255 case class RealUniform(min: Double, max: Double) extends Distribution[Double] {
256 private val rnd = new Random
257 private val diff = max - min
258 def sample = min + rnd.nextDouble * diff
259 def integral(f: Double => Double) = ??? // just ordinary integration
260 }
261
262 /** Uniform distribution on finite sets */
263 case class FiniteUniform[X](values: Array[X]) extends Distribution[X] {
264 private val rnd = new scala.util.Random
265 private val size = values.size
266 def sample = values(rnd.nextInt(size))
267 def integral(f: X => Double) = (for (x <- values) yield f(x)).sum
268 }
269
270 /** Non-uniform distribution on finite sets */
271 class Categorical[X] private (
272 val values: Array[X],
273 val probabilities: Array[Double],
274 val cumulatedProbabilities: Array[Double]
275 ) extends Distribution[X] {
276
277 private val rnd = new Random
278
279 def sample: X = {
280 val i = Categorical.infIndex(cumulatedProbabilities, rnd.nextDouble)
281 values(i)
282 }
283
284 def integral(f: X => Double) = {
285 (for ((v,p) <- values zip probabilities) yield f(v) * p).sum
286 }
287 }
288
289 object Categorical {
290
291 /**
292 * Constructs a finite distribution with given values and weights.
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293 * The weights do not have to sum up to 1.
294 */
295 def apply[X](values: Array[X], weights: Array[Double]): Categorical[X] = {
296 require(
297 !values.isEmpty,
298 "Attempted to construct Categorical distribution on empty set"
299 )
300 val totalWeight = weights.sum
301 require(totalWeight >= 0)
302 require(weights.forall(_ >= 0))
303 for (i <- 0 until weights.size) {
304 weights(i) /= totalWeight
305 }
306 val cumulatedProbabilities =
307 weights.scanLeft(0d){(x, y) => x + y}.tail
308 // artificially add +\infty to the last element
309 cumulatedProbabilities(weights.size-1) += Double.PositiveInfinity
310 new Categorical(values, weights, cumulatedProbabilities)
311 }
312
313 /**
314 * Constructs a finite distribution with given values and probability vector
315 */
316 def apply[X:ClassTag](valuesProbs: Array[(X, Double)]): Categorical[X] = {
317 val (vals, probs) = valuesProbs.unzip
318 this.apply(vals.toArray, probs.toArray)
319 }
320
321 // This part is surprisingly nasty:
322 // finds the smallest index 8 i 8 such that p <= c(i)
323 private[Categorical] def infIndex(c: Array[Double], p: Double): Int = {
324 val bs = java.util.Arrays.binarySearch(c, p)
325 if (bs > 0) {
326 // almost infinitely improbable event, but it _can_ occur on real machine
327 // we have to walk backward until 8 c 8 actually jumps, otherwise we could
328 // return an event of probability 0
329 var i = bs
330 while (c(i) == p && i > 0) i -= 1;
331 i
332 } else if (bs == 0) {
333 0
334 } else {
335 -bs - 1
336 }
337 }
338 }
339
340 case class Permutation(mapping: Array[Int]) extends (Int => Int) {
341 def apply(i: Int) = mapping(i)
342 override def toString = mapping.mkString("(", ",", ")")
343 def shuffle[A](v: Vector[A]): Vector[A] = {
344 require(mapping.size == v.size)
345 Vector.tabulate(v.size){i => v(mapping(i))}
346 }
347 // exactly the same as above, modulo "JVM-curse": arrays are still aliens...
348 def shuffle[A: ClassTag](arr: Array[A]): Array[A] = {
349 require(mapping.size == arr.size)
350 Array.tabulate(arr.size){i => arr(mapping(i))}
351 }
352 }
353
354 case class UniformPermutation(n: Int) extends Distribution[Permutation] {
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355 private val rnd = new Random
356 def sample: Permutation = {
357 val mapping = Array.tabulate(n){i => i}
358 var tmp: Int = 0
359 for (i <- 0 until n) {
360 val a = rnd.nextInt(n - i)
361 val b = n - 1 - i
362 tmp = mapping(a)
363 mapping(a) = mapping(b)
364 mapping(b) = tmp
365 }
366 Permutation(mapping)
367 }
368 def integral(f: Permutation => Double) = ??? // not that important here
369 }
370
371 import scala.collection.mutable.HashSet
372
373 /**
374 * Generates a random injective function from 8 {0,...,a-1} 8 to 8 {0,...,b-1} 8 ,
375 * represented by an integer array.
376 */
377 case class UniformInjection(a: Int, b: Int)
378 extends Distribution[Array[Int]] {
379 private val rnd = new Random
380
381 private def permutationMethod(a: Int, b: Int): Array[Int] = {
382 val mapping = Array.tabulate(b){i => i}
383 var tmp: Int = 0
384 for (i <- 0 until a) {
385 val x = rnd.nextInt(b - i)
386 val y = b - 1 - i
387 tmp = mapping(x)
388 mapping(x) = mapping(y)
389 mapping(y) = tmp
390 }
391 Array.tabulate(a){i => mapping(b - 1 - i)}
392 }
393
394 private def retryMethod(a: Int, b: Int): Array[Int] = {
395 val chosen = new HashSet[Int]
396 val res = new Array[Int](a)
397 var i = 0
398 while (i < a) {
399 val cand = rnd.nextInt(b)
400 if (!chosen.contains(cand)) {
401 res(i) = cand
402 i += 1
403 chosen += cand
404 }
405 }
406 res
407 }
408
409 def sample = {
410 val C_swap = 7
411 val C_arr = 2
412 val C_hash = 8
413 val retryCost = b * C_hash * math.log(b / (b - a + 1).toDouble)
414 val permutationCost = C_arr * b + C_swap * a
415 if (retryCost < permutationCost){
416 retryMethod(a, b)
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417 } else {
418 permutationMethod(a, b)
419 }
420 }
421
422 def integral(f: Array[Int] => Double) = ???
423 }
424
425 /**
426 * Mixture of finitely many measures is essentially just a two step
427 * experiment: first, we choose a measure, then we sample with respect
428 * to the chosen measure.
429 */
430 class Mixture[X](
431 val components: Array[Distribution[X]],
432 val weights: Array[Double]
433 ) {
434 private val twoStep =
435 for (m <- Categorical(components, weights); x <- m) yield x
436 def sample = twoStep.sample
437 def integral(f: X => Double) = twoStep.integral(f)
438 }
439
440 /**
441 * Empirical distribution on the real number line.
442 *
443 * Essentially a mixture of Dirac distributions,
444 * but with an efficient method to compute
445 * empirical cumulative distribution function.
446 */
447 class EmpiricalReal private[EmpiricalReal](points: Array[Double])
448 extends Distribution[Double] {
449 private val rnd = new Random
450 private val n = points.size
451 def sample = points(rnd.nextInt(n))
452 def integral(f: Double => Double) = {
453 var i = 0
454 var sum = 0.0
455 while (i < n) {
456 sum += f(points(i))
457 i += 1
458 }
459 sum / n
460 }
461 def cdf(t: Double): Double = {
462 var bs = java.util.Arrays.binarySearch(points, t)
463 if (bs >= 0) {
464 while (bs < (n - 1) && points(bs + 1) == t) bs += 1
465 bs += 1
466 } else {
467 bs = - bs - 1
468 }
469 bs.toDouble / n
470 }
471 }
472
473 object EmpiricalReal {
474 def apply(points: Iterable[Double]): EmpiricalReal = {
475 new EmpiricalReal(points.toArray.sorted)
476 }
477 }
478
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479
480
481 /* #############################################################################
482 [!] Stochastic processes and Markov chains
483 ###########################################################################*/
484
485 /** Time discrete random process */
486 trait StochasticProcess[X] extends Distribution[Stream[X]] { outer =>
487
488 /** This process, stopped as soon as some predicate is fulfilled */
489 def stopped(hittingTimePredicate: X => Boolean): StochasticProcess[X] = {
490 new StochasticProcess[X] {
491 private def sampleHelper(s: Stream[X]): Stream[X] = {
492 val head #:: tail = s
493 if (hittingTimePredicate(head)) {
494 head #:: Stream.continually(head)
495 } else {
496 head #:: sampleHelper(tail)
497 }
498 }
499 def sample: Stream[X] = sampleHelper(outer.sample)
500 def integral(f: Stream[X] => Double) = ??? // easy, maybe later
501 }
502 }
503
504 /** pointwise mapping */
505 def mapPointwise[Y](f: X => Y): StochasticProcess[Y] =
506 new StochasticProcess[Y] {
507 def sample = (for (path <- outer) yield path.map(f)).sample
508 def integral(g: Stream[Y] => Double) = {
509 outer.integral(path => g(path.map(f)))
510 }
511 }
512
513 /** pointwise Markov kernel application */
514 def flatMapPointwise[Y](f: X => Distribution[Y]): StochasticProcess[Y] =
515 new StochasticProcess[Y] {
516 def sample = (for (path <- outer) yield path.map(x => f(x).sample)).sample
517 def integral(g: Stream[Y] => Double) = ??? // possible, but not needed now
518 }
519
520 /** pointwise zipping with other proccess */
521 def zipPointwise[Y](other: StochasticProcess[Y]): StochasticProcess[(X,Y)] = {
522 new StochasticProcess[(X,Y)] {
523 def sample =
524 (for (a <- outer; b <- other) yield (a zip b)).sample
525 def integral(g: Stream[(X,Y)] => Double) = ??? // possible, not needed now
526 }
527 }
528 }
529
530 /**
531 * Time discrete 8 X 8 -valued Markov chain.
532 *
533 */
534 trait MarkovChain[X] extends StochasticProcess[X] { outer =>
535 /** Returns the initial distribution */
536 def initial: Distribution[X]
537 def next(current: X): Distribution[X]
538
539 /** Starts a new Markov chain at 8 x 8 */
540 def startAt(x: X): StochasticProcess[X] = new StochasticProcess[X] {
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541 // private val law = for { // It looks correct, but it's not...
542 // y <- outer.next(x)
543 // tail <- outer.startAt(y)
544 // } yield x #:: tail
545
546 private def sampleTail(head: X): Stream[X] = {
547 val tailStart = outer.next(head).sample
548 tailStart #:: sampleTail(tailStart)
549 }
550
551 def sample = x #:: sampleTail(x)
552
553 def integral(f: Stream[X] => Double) = ??? // This seems rather difficult?
554 }
555
556 private val combinedLaw = {
557 val blah = initial
558 for (i <- initial; path <- startAt(i)) yield path
559 }
560
561 /**
562 * Starts a Markov chain with first valued chosen according to
563 * the initial distribution
564 */
565 def sample = combinedLaw.sample
566 def integral(f: Stream[X] => Double) = combinedLaw.integral(f)
567 }
568
569 /** A deterministic function reinterpreted as stochastic process */
570 abstract class DeterministicFunction[X] extends StochasticProcess[X] {
571 def apply(t: Int): X
572 def sample = Stream.from(0).map(t => this(t))
573 def integral(f: Stream[X] => Double) = f(sample)
574 }
575
576 /**
577 * Time-discrete random walk that is reflected
578 * at the bounds 8 min 8 and 8 max 8 .
579 */
580 class BoundedRandomWalk(min: Double, max: Double, jump: Double) extends {
581 val initial = RealUniform(min, max)
582 } with MarkovChain[Double] {
583 require(jump < (max - min))
584 def next(current: Double) = {
585 if (current + jump >= max) Dirac(current - jump)
586 else if (current - jump <= min) Dirac(current + jump)
587 else GenBernoulli(current + jump, current - jump)
588 }
589 }
590
591 /* #############################################################################
592 [!] Statistics
593 ###########################################################################*/
594
595 /**
596 * A statistic of type 8 X,Y 8 is anything that can consume samples of type 8 X 8

597 * and process them on the fly, yielding values of type 8 Y 8 in the end.
598 *
599 * For example, a structure that can consume lot of real numbers, and
600 * return their average in the end, is a statistic.
601 * A statistic should not occupy too much memory, if possible.
602 */
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603 trait Statistic[-X, +Y] { outer =>
604 def consume(x: X): Unit
605 def result: Y
606 def prepend[Z](f: Z => X): Statistic[Z, Y] = new Statistic[Z, Y] {
607 def consume(z: Z) = outer.consume(f(z))
608 def result = outer.result
609 }
610 def map[Z](f: Y => Z): Statistic[X, Z] = new Statistic[X, Z] {
611 def consume(x: X) = outer.consume(x)
612 def result = f(outer.result)
613 }
614 }
615
616 class RealAverage extends Statistic[Double, Double] {
617 private var sum: Double = 0.0
618 private var number: Long = 0L
619 def consume(x: Double) = { sum += x; number += 1 }
620 def result = sum / number
621 }
622
623 class EcdfStatistic extends Statistic[Double, EmpiricalReal] {
624 private var allValues: List[Double] = Nil
625 def consume(x: Double) = { allValues ::= x }
626 def result = EmpiricalReal(allValues.toArray)
627 }
628
629 /* #############################################################################
630 [!] Partitions
631 ###########################################################################*/
632
633 import scala.collection.immutable.Set
634
635 /** Extensional representation of a partition */
636 case class Partition[X](sets: Set[Set[X]]) {
637 override def toString = {
638 sets.map{
639 _.toList.map{_.toString}.sorted.mkString("{", ",", "}")
640 }.toList.sorted.mkString("{", ",", "}")
641 }
642
643 def totalSet = sets.flatten
644 }
645
646 object Partition {
647
648 /** Transforms an intensional representation of a partition into
649 * an extensional representation
650 * (This is essentially the function 8 \mathcal{E} 8 )
651 */
652 def groupBy[X, Y](what: Iterable[X], byWhat: X => Y): Partition[X] = {
653 val sets = what.toSet.groupBy(byWhat).values.toSet
654 Partition(sets)
655 }
656
657 def coarsest[X](total: Set[X]): Partition[X] = Partition(Set(total))
658 def finest[X](total: Set[X]): Partition[X] =
659 Partition(total.map{ x => Set(x) })
660 }
661
662
663
664
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665
666
667 /* #############################################################################
668 [!] Random populations
669 ###########################################################################*/
670
671 /* The goal of this chunk of code is to model (potentially) infinite streams
672 * of populations, without specifying any parentship relationships between
673 * different generations.
674 */
675
676 // A population is described by
677 // - the number of families,
678 // - an array of single-byte 8 FamilyDescriptor 8 s,
679 // - a 8 FamilyStructure 8 , that knows how to interpret the 8 FamilyDescriptors 8

680 type FamilyDescriptor = Byte
681
682 // The complete information about a random coalescent consists of a sequence
683 // of arrays with integer-triples as entries. Each triple contains the
684 // following information:
685 // - family index
686 // - index of individual within family
687 // - index of chromosome within individual
688 type FamilyIdx = Short
689 type IndividualIdx = Byte
690 type ChromosomeIdx = Byte
691
692 /**
693 * A 8 FamilyStructure 8 describes possible types of families in a population.
694 * In some models (for example, monogamous diploid model), there will
695 * be just one type of family. However, for example for "alien bees",
696 * there will be multiple types of families, depending on the number of
697 * haploid males: 8 (1 queen, 1 male) 8 , 8 (1 queen, 2 males) 8 , ...,
698 * 8 (1 queen, 255 males) 8 .
699 */
700 trait FamilyStructure {
701 def numParents(descriptor: FamilyDescriptor): Int
702 def maxNumParents: Int
703 def randomDescriptor: Distribution[FamilyDescriptor]
704 def familyToString(descriptor: FamilyDescriptor): String
705 def fullCoordToString(f: FamilyIdx, i: IndividualIdx, c: ChromosomeIdx) =
706 "(f=%d,i=%d,c=%d)".format(f, i, c)
707
708 /** Suppose that we know that the parent family of an individual with
709 * index 8 i 8 (internal index within family structure) is of type 8 parent 8 .
710 * What are the possible ways for the individual 8 i 8 to inherit its
711 * chromosomes from its parents?
712 *
713 * For example, in the monogamous diploid model with one male and one female
714 * as parents, there are four possible, equally probable assignments of the
715 * inherited chromosomes. If we mark father's chromosomes by 8 (a,b) 8 and
716 * mother's chromosomes by 8 (c,d) 8 , then possible outcomes are:
717 * 8 (a,c) 8 , 8 (a,d) 8 , 8 (b,c) 8 and 8 (b,d) 8 .
718 */
719 def chromosomeInheritance(
720 i: IndividualIdx,
721 parent: FamilyDescriptor
722 ): Distribution[ChromosomeInheritance]
723
724 /** Supposing that a lineage is tracked far enough into the past,
725 * and it ends up in a family with the specified 8 descriptor 8 .
726 * Which individual and which chromosome will the lineage hit with
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727 * what probability?
728 *
729 * For example, if there is one father and one mother, both diploid,
730 * then each chromosome will be hit with probability 8 1/4 8 .
731 * On the other hand, if we have one diploid queen and 8 D 8 haploid drones,
732 * then each chromosome of the queen will be hit with probability 8 1/3 8 ,
733 * while each drone will be hit with probability 8 1/3D 8 .
734 */
735 def equilibriumLineagePosition(
736 descriptor: FamilyDescriptor
737 ): Distribution[(IndividualIdx, ChromosomeIdx)]
738 }
739
740 /**
741 * For all our models, a family has essentially just one property:
742 * a natural number of "parents" (for example, number of drones + 1 queen for
743 * the bees/wasps). Therefore, a population is described by the number of
744 * families, and a single integer for each family (we shall call such an
745 * integer a "family descriptor").
746 * It's reasonable to assume that there aren't too many "family types" in each
747 * model, we restrict it to 256 in order to keep the representation compact.
748 */
749 case class Population(
750 familyStructure: FamilyStructure,
751 familyDescriptors: Array[FamilyDescriptor]
752 ) {
753 def numFamilies = familyDescriptors.size
754 lazy val numIndividuals = familyDescriptors.map{
755 d => familyStructure.numParents(d)
756 }.sum
757 override def toString = familyDescriptors.map{
758 d => familyStructure.familyToString(d)
759 }.mkString("Population[",",","]")
760 def apply(f: FamilyIdx) = familyDescriptors(f)
761 }
762
763 /**
764 * Generates an infinite stream of populations.
765 * Each population consists of a bunch of families, determined by their
766 * descriptors.
767 * The number of families is determined by the process 8 numberOfFamilies 8 .
768 */
769 def randomPopulationHistory(
770 numberOfFamilies: StochasticProcess[Int],
771 familyStructure: FamilyStructure
772 ): StochasticProcess[Population] = numberOfFamilies.flatMapPointwise{
773 n => familyStructure.randomDescriptor.pow(n).map{
774 v => Population(familyStructure, v.toArray)
775 }
776 }
777
778 /* #############################################################################
779 [!] Random pedigrees
780 ###########################################################################*/
781
782 /*
783 * Now we build random pedigrees on top of random population histories,
784 * by specifying parentship relations between adjacent generations.
785 */
786
787 /** A 8 ParentFamilyChoice 8 is a data structure which, for each given
788 * individual 8 (f,i) 8 (individual from family 8 f 8 , with individual index 8 i 8 ),
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789 * stores an index of a parent family from previous generation.
790 */
791 class ParentFamilyChoice (
792 val childPopulation: Population,
793 val parentPopulation: Population
794 ) extends ((FamilyIdx, IndividualIdx) => FamilyIdx) {
795
796 private val numFamilies = childPopulation.numFamilies
797 private val maxNumParents = parentPopulation.familyStructure.maxNumParents
798
799 private val parentFamily: Array[FamilyIdx] = {
800 new Array[FamilyIdx](numFamilies * maxNumParents)
801 }
802
803 def update(f: FamilyIdx, i: IndividualIdx, pf: FamilyIdx): Unit = {
804 parentFamily(f * maxNumParents + i) = pf
805 }
806
807 def apply(f: FamilyIdx, i: IndividualIdx): FamilyIdx =
808 parentFamily(f * maxNumParents + i)
809
810 override def toString = {
811 parentFamily.grouped(maxNumParents).map{
812 _.mkString(",")
813 }.mkString("PFC(","|",")")
814 }
815 }
816
817 /** A 8 OffspringNumberDistributionFactory 8 takes two inputs:
818 * total number of individuals in the current generation, and
819 * number of families in the previous generation.
820 * It returns a distribution of an 8 Array[Int] 8 valued random variable, such
821 * that the size of the array corresponds to the number of families, the
822 * sum of entries of the array is equal to the total number of individuals,
823 * and furthermore, the entries of the array are exchangeable,
824 * natural-number-valued random variables.
825 */
826 trait OffspringNumberDistributionFactory {
827 def apply(
828 currentNumIndividuals:Int,
829 previousNumFamilies: Int
830 ): Distribution[Array[Int]]
831
832 /** This is essentially 8 \Phi_1(2) 8 */
833 def sameFamilyChoiceProbability(
834 currentNumInviduals: Int,
835 previousNumFamilies: Int
836 ): Double
837 }
838
839 object WrightFisherFactory
840 extends OffspringNumberDistributionFactory {
841 /**
842 * Builds a special case of multinomial distribution, with all outcomes
843 * having the same probability.
844 */
845 def apply(currentNumIndividuals: Int, previousNumFamilies: Int) = {
846 new Distribution[Array[Int]] {
847 val rnd = new Random
848 def sample = {
849 val res = new Array[Int](previousNumFamilies)
850 for (i <- 0 until currentNumIndividuals) {
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851 res(rnd.nextInt(previousNumFamilies)) += 1
852 }
853 res
854 }
855 def integral(f: Array[Int] => Double) = ??? // irrelevant...
856 }
857 }
858 /** 8 \Phi_1(2) 8 */
859 def sameFamilyChoiceProbability(
860 currentNumIndividuals: Int,
861 previousNumFamilies: Int
862 ) = 1.0 / previousNumFamilies
863 }
864
865 /**
866 * A random pedigree is a 8 ParentFamilyChoice 8 -valued stochastic process,
867 * that is, it tells for each individual in each family in each generation
868 * what parent-family to choose.
869 */
870 def randomPedigree(
871 generations: Stream[Population],
872 offspringNumberFactory: OffspringNumberDistributionFactory
873 ): StochasticProcess[ParentFamilyChoice] =
874 new StochasticProcess[ParentFamilyChoice] {
875 def sample = {
876 val currentGenerations = generations
877 val parentGenerations = currentGenerations.tail
878 val adjacentGenerations = currentGenerations zip parentGenerations
879 for ((curr, prev) <- adjacentGenerations) yield {
880 val offspringNumbers =
881 offspringNumberFactory(curr.numIndividuals, prev.numFamilies).sample
882 val sigma = UniformPermutation(curr.numIndividuals).sample
883 val q = (for (
884 (famIdx, numOff) <- (0 until prev.numFamilies) zip offspringNumbers;
885 x <- Array.fill[FamilyIdx](numOff)(famIdx.toShort)
886 ) yield x).toArray
887 assert(q.forall{x => x >= 0},
888 "prev.numFamilies = " + prev.numFamilies + "\n" +
889 "q = " + q.mkString(",")
890 )
891 val qSigma = sigma.shuffle(q)
892 assert(qSigma.forall{x => x >= 0})
893 var r = 0
894 val pfc = new ParentFamilyChoice(curr, prev)
895 for (f <- (0 until curr.numFamilies).map(_.toShort).toArray) yield {
896 val numPrts = curr.familyStructure.numParents(curr.familyDescriptors(f))
897 for (i <- (0 until numPrts).map(_.toByte).toArray) yield {
898 val parentFamilyIdx = qSigma(r)
899 r += 1
900 pfc(f, i) = parentFamilyIdx
901 }
902 }
903 pfc
904 }
905 }
906 def integral(f: Stream[ParentFamilyChoice] => Double) = ??? // impractical
907 }
908
909 /**
910 * Population structure defines an an increasing process
911 * that corresponds to the internal time of the Kingman's coalescent.
912 *
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913 * The following process defines time increments.
914 */
915 def virtualTimeIncrements(
916 generations: Stream[Population],
917 offspringNumberFactory: OffspringNumberDistributionFactory,
918 familyStructure: FamilyStructure
919 ): Stream[Double] = {
920 // This is 8 c_N 8 divided by 8 \Phi_1(2) 8 : we don't have to compute it
921 // manually, the Giry-monad does this job for us.
922 val averageSameChromosomeChoiceProb =
923 (for {
924 descr <- familyStructure.randomDescriptor
925 firstLineage <- familyStructure.equilibriumLineagePosition(descr)
926 secondLineage <- familyStructure.equilibriumLineagePosition(descr)
927 } yield (firstLineage == secondLineage)).prob{ b => b }
928
929 for ((curr, prev) <- generations zip generations.tail) yield {
930 val phi12 = offspringNumberFactory.sameFamilyChoiceProbability(
931 curr.numIndividuals,
932 prev.numFamilies
933 )
934 phi12 * averageSameChromosomeChoiceProb // This is our c_N
935 }
936 }
937
938 /**
939 * Cumulated sums of time increments
940 */
941 def virtualTime(
942 generations: Stream[Population],
943 offspringNumberFactory: OffspringNumberDistributionFactory,
944 familyStructure: FamilyStructure
945 ): Stream[Double] = {
946 val deltas = virtualTimeIncrements(
947 generations,
948 offspringNumberFactory,
949 familyStructure
950 )
951 deltas.scanLeft(0d){ case (prevSum, entry) => prevSum + entry }
952 }
953
954 /* #############################################################################
955 [!] Coalescents in random pedigrees
956 ###########################################################################*/
957
958 /* Now we can simulate random coalescents in random pedigrees.
959 * We need a way to represent the outcomes of the
960 * Mendelian randomness experiments.
961 * This is what 8 ChromosomeInheritance 8 is for.
962 */
963
964 /**
965 * A 8 ChromosomeInheritance 8 is a function that determines how the genome of
966 * an individual is composed from the genome of individual's parents.
967 *
968 * It takes the index of a choromosome of the individual as input, and
969 * returns index of the parent, as well as index of a chromosome within the
970 * parent, that is copied by the individual.
971 *
972 * Example: Suppose we have a diploid individual (with chromosomes numbered
973 * 0 and 1)
974 * Suppose its parent family consists of a diploid mother (individual index 0)
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975 * and a diploid father (with individual index 1).
976 * Then
977 * {{{
978 * f(0) = (0,1)
979 * f(1) = (1,0)
980 * }}}
981 * would be a valid 8 ChromosomeInheritance 8 function. It would tell us, that
982 * the first chromosome of the individual is the same as the second chromosome
983 * of the mother, and the second chromosome is the same as the first chromosome
984 * of the father.
985 */
986 trait ChromosomeInheritance
987 extends (ChromosomeIdx => (IndividualIdx, ChromosomeIdx))
988
989 /**
990 * Special 8 ChromosomeInheritance 8 for haploid individuals.
991 * Since there is just one chromosome, its index can be ignored.
992 */
993 case class ConstInheritance(i: IndividualIdx, c: ChromosomeIdx)
994 extends ChromosomeInheritance {
995 def apply(ignored: ChromosomeIdx) = (i, c)
996 }
997
998 /**
999 * Completely describes predecessors of a sample.

1000 * Corresponds to values of 8 X^{N,n}_g 8 in the proof.
1001 */
1002 case class FullState(
1003 state: Array[(FamilyIdx, IndividualIdx, ChromosomeIdx)],
1004 familyStructure: Option[FamilyStructure] = None // not strictly necessary
1005 ) {
1006 override def toString = if (familyStructure.isEmpty) {
1007 state.mkString("Full[",",","]")
1008 } else {
1009 state.map{x => familyStructure.get.fullCoordToString(x._1, x._2, x._3)}.
1010 mkString("Full[",";","]")
1011 }
1012 def toPartition: Partition[Int] = Partition.groupBy(
1013 0 until state.size, idx => state(idx)
1014 )
1015 def apply(i: Int) = state(i)
1016 def sampleSize = state.size
1017 }
1018
1019 // Corresponds to the process 8 (X^{N,n}_g)_g 8 in the proof.
1020 def fullCoalescentHistory(
1021 sampleSize: Int,
1022 pedigree: Stream[ParentFamilyChoice]
1023 ): StochasticProcess[FullState] = new StochasticProcess[FullState] {
1024
1025 private def mendelianSampling(
1026 relevantIndividualCoords: Set[(FamilyIdx, IndividualIdx)],
1027 pfc: ParentFamilyChoice
1028 ): Map[(FamilyIdx, IndividualIdx), ChromosomeInheritance] = {
1029 (for ((f, i) <- relevantIndividualCoords) yield {
1030 // what is the parent family of the individual 8 (f,i) 8 ?
1031 val predFamIdx = pfc(f, i)
1032 // get the descriptor of the parent family from 8 ParentFamilyChoice 8

1033 val predFamDescr = pfc.parentPopulation(predFamIdx)
1034 // use the 8 FamilyStructure 8 to obtain the law of Mendelian
1035 // inheritance for this individual and this family type
1036 val familyStructure = pfc.parentPopulation.familyStructure
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1037 val mendelianLaw =
1038 familyStructure.chromosomeInheritance(i, predFamDescr)
1039 // sample an assignment of chromosomes to parents and their
1040 // chromosomes
1041 val chromosomeInheritance = mendelianLaw.sample
1042 ((f, i), chromosomeInheritance)
1043 }).toMap
1044 }
1045
1046 private def sampleHelper(
1047 startingAt: FullState,
1048 remainingPedigree: Stream[ParentFamilyChoice]
1049 ): Stream[FullState] = {
1050 remainingPedigree.scanLeft(startingAt){ (s, pfc) =>
1051 val relevantIndividualCoords: Set[(FamilyIdx, IndividualIdx)] =
1052 s.state.map{ x => (x._1, x._2) }.toSet
1053 val relevantMendelianOutcomes =
1054 mendelianSampling(relevantIndividualCoords, pfc)
1055 val newFullState = Array.tabulate(s.sampleSize){ i =>
1056 // what chromosome does 8 i 8 'th marker point to?
1057 val (famIdx, indIdx, chrIdx) = s(i)
1058 // what is the parent family of the individual 8 (famIdx,indIdx) 8 ?
1059 val predFamIdx = pfc(famIdx, indIdx)
1060 // what is the relevant outcome of the Mendelian experiment?
1061 val chromosomeInheritance = relevantMendelianOutcomes((famIdx, indIdx))
1062 // use the chromosomeInheritance to obtain parent index and index of
1063 // the chromosome within parent
1064 val (predIndIdx, predChrIdx) = chromosomeInheritance(chrIdx)
1065 // combine family index with parent index and chromosome index into
1066 // a new, completely unambiguous, coordinate of the 8 i 8 'th marker
1067 (predFamIdx, predIndIdx, predChrIdx)
1068 }
1069 FullState(newFullState, Some(pfc.parentPopulation.familyStructure))
1070 }
1071 }
1072
1073 def sample = {
1074 // start with a uniform injection
1075 val firstNumFamilies = pedigree(0).childPopulation.numFamilies
1076 val law_x0 =
1077 for (j <- UniformInjection(sampleSize, firstNumFamilies)) yield {
1078 FullState(
1079 Array.tabulate(sampleSize){i => (j(i).toShort, 0.toByte, 0.toByte)},
1080 Some(pedigree(0).parentPopulation.familyStructure)
1081 )
1082 }
1083 val realization_x0 = law_x0.sample
1084
1085 // use the sample helper to continue the stream
1086 sampleHelper(realization_x0, pedigree)
1087 }
1088
1089 def integral(f: Stream[FullState] => Double) = ??? // impractical
1090 }
1091
1092 // Corresponds to 8 (\mathfrak{X}^{N,n}_g)_g 8 in the proof
1093 def partitionCoalescentHistory(
1094 sampleSize: Int,
1095 pedigree: Stream[ParentFamilyChoice]
1096 ): StochasticProcess[Partition[Int]] =
1097 fullCoalescentHistory(sampleSize, pedigree).mapPointwise(_.toPartition)
1098
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1099
1100
1101
1102 /* #############################################################################
1103 [!] States and holding times representation
1104 ###########################################################################*/
1105
1106 /**
1107 * State and holding time representation of a coalescent.
1108 * The lists 8 states 8 and 8 holdingTimes 8 store only the relevant entries
1109 * 8 S_2,S_3,...,S_n 8 and 8 H_2,H_3,...,H_n 8 .
1110 */
1111 class StatesHoldingTimes(
1112 val sampleSize: Int,
1113 val states: List[Partition[Int]],
1114 val holdingTimes: List[Double]
1115 ) {
1116 def mrcaTime = holdingTimes.sum
1117 override def toString = {
1118 (for ((h,s) <- (holdingTimes zip states).reverse) yield {
1119 "%2.3f %s".format(h,s)
1120 }).mkString("StatesTimes[\n ","\n ","\n|") +
1121 " mrcaTime = " + holdingTimes.sum + "]"
1122 }
1123 }
1124
1125 object StatesHoldingTimes {
1126 /**
1127 * Builds a states-and-holding-times representation
1128 * from a stream of partitions and the virtual time.
1129 */
1130 def apply(
1131 sampleSize: Int,
1132 partitionHistory: Stream[Partition[Int]],
1133 virtualTime: Stream[Double]
1134 ): StatesHoldingTimes = {
1135 var lastSize = sampleSize + 1
1136 var lastJumpTime = -42.0
1137 var lastState = Partition.finest((0 to sampleSize).toSet)
1138 var states: List[Partition[Int]] = Nil
1139 var holdingTimes: List[Double] = Nil
1140 for ((s, t) <- partitionHistory zip virtualTime) {
1141 if (lastSize > s.sets.size) {
1142 // jump detected
1143 while (lastSize > s.sets.size) {
1144 holdingTimes ::= (t - lastJumpTime)
1145 lastJumpTime = t
1146 states ::= s
1147 lastSize -= 1
1148 }
1149 if (s.sets.size == 1) {
1150 return new StatesHoldingTimes(
1151 sampleSize,
1152 states.tail,
1153 holdingTimes.take(sampleSize - 1)
1154 )
1155 }
1156 }
1157 }
1158 throw new RuntimeException("Unexpectedly reached end of infinite stream.")
1159 }
1160 }
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1161
1162 val Venus = '\u2640' // female
1163 val Mars = '\u2642' // male
1164 val Mercury = '\u263F' // hermaphrodite
1165
1166 /* #############################################################################
1167 [!] Meme model
1168 ###########################################################################*/
1169
1170 object MemeFamilyStructure extends FamilyStructure {
1171 def numParents(ignore: Byte) = 2
1172 def maxNumParents = 2
1173 def randomDescriptor = Dirac(0.toByte) // there is only one type of family
1174 def familyToString(ignore: Byte) = "" + Venus + Mars
1175 def chromosomeInheritance(i: IndividualIdx, parentFamilyDescriptor: Byte):
1176 Distribution[ChromosomeInheritance] = {
1177 // structure of parent family is always the same, 8 i 8 is also irrelevant:
1178 // we always just copy the meme either from mother, or from father.
1179 // Since both mother and father are "meme-haploid", the "chromosome"-index
1180 // is always 0.
1181 GenBernoulli(
1182 ConstInheritance(0,0), // inherit 0-th meme from mother
1183 ConstInheritance(1,0) // or 0-th meme from father
1184 )
1185 }
1186 def equilibriumLineagePosition(d: FamilyDescriptor):
1187 Distribution[(IndividualIdx, ChromosomeIdx)] =
1188 for (i <- GenBernoulli(0, 1)) yield (i.toByte, 0.toByte)
1189
1190 override def fullCoordToString(
1191 f: FamilyIdx,
1192 i: IndividualIdx,
1193 c: ChromosomeIdx
1194 ) = "(%d,%s)".format(f, (if (i == 0) ("" + Venus) else ("" + Mars)))
1195 }
1196
1197 /* #############################################################################
1198 [!] 'Duke' model (diploid, single locus, one male, one female)
1199 ###########################################################################*/
1200
1201 case class DiploidInheritance(
1202 motherChromosome: ChromosomeIdx,
1203 fatherChromosome: ChromosomeIdx
1204 ) extends ChromosomeInheritance {
1205 def apply(ci: ChromosomeIdx) =
1206 if (ci == 0) (0.toByte, motherChromosome)
1207 else (1.toByte, fatherChromosome)
1208 }
1209
1210 object DukeFamilyStructure extends FamilyStructure {
1211 def numParents(ignore: FamilyDescriptor) = 2
1212 def maxNumParents = 2
1213 def randomDescriptor = Dirac(0.toByte)
1214 def familyToString(ignore: FamilyDescriptor) = "" + Venus + Mars
1215 def chromosomeInheritance(i: IndividualIdx, parentFamilyDescriptor: Byte):
1216 Distribution[ChromosomeInheritance] = {
1217 // without restriction of generality, the first gene is always
1218 // inherited from mother, the second from father
1219 FiniteUniform(Array(
1220 DiploidInheritance(0.toByte, 0.toByte),
1221 DiploidInheritance(0.toByte, 1.toByte),
1222 DiploidInheritance(1.toByte, 0.toByte),
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1223 DiploidInheritance(1.toByte, 1.toByte)
1224 ))
1225 }
1226 def equilibriumLineagePosition(ignored: FamilyDescriptor):
1227 Distribution[(IndividualIdx, ChromosomeIdx)] =
1228 for {
1229 i <- GenBernoulli(0.toByte, 1.toByte)
1230 c <- GenBernoulli(0.toByte, 1.toByte)
1231 } yield (i, c)
1232
1233 override def fullCoordToString(
1234 f: FamilyIdx,
1235 i: IndividualIdx,
1236 c: ChromosomeIdx
1237 ) = "(%d,%s,%s)".format(f,
1238 (if (i == 0.toByte) ("" + Venus) else ("" + Mars)),
1239 c.toInt
1240 )
1241 }
1242
1243 /* #############################################################################
1244 [!] Polygynous fish model
1245 ###########################################################################*/
1246
1247 case class FishInheritance(
1248 fatherChromosome: ChromosomeIdx,
1249 motherIdx: IndividualIdx,
1250 motherChromosome: ChromosomeIdx
1251 ) extends ChromosomeInheritance {
1252 def apply(ci: ChromosomeIdx) =
1253 if (ci == 0) (0.toByte, fatherChromosome)
1254 else (motherIdx, motherChromosome)
1255 }
1256
1257 /**
1258 * Family consisting of a single diploid father-fish
1259 * and a uniformly chosen number of 8 minFemales 8 to 8 maxFemales 8

1260 * diploid females.
1261 *
1262 * Father-fish has index 0.
1263 * Females are numbered 1 to 8 maxFemales 8 .
1264 * Family descriptor 8 d 8 corresponds to a family with 8 d 8 females.
1265 * The descriptor 8 d=0 8 should never occur.
1266 */
1267 case class FishFamilyStructure(minFemales: Byte, maxFemales: Byte)
1268 extends FamilyStructure {
1269 require(minFemales > 0,
1270 "A fish family needs at least one female, but minFemales = " + minFemales)
1271 require(maxFemales >= minFemales,
1272 "Inconsistency: minFemales = " + minFemales +
1273 " maxFemales = " + maxFemales)
1274 def numParents(d: FamilyDescriptor) = (d.toInt + 1)
1275 def maxNumParents = maxFemales.toInt + 1
1276 def randomDescriptor = IntUniform(minFemales, maxFemales + 1).map{_.toByte}
1277 def familyToString(d: FamilyDescriptor) = Mars + ("" + Venus) * d.toInt
1278 def chromosomeInheritance(i: IndividualIdx, d: FamilyDescriptor):
1279 Distribution[ChromosomeInheritance] = {
1280 // without restriction of generality, the first gene is
1281 // inherited from the father-fish, the other gene is
1282 // inherited from the uniformly chosen mother-fish.
1283 for {
1284 fc <- GenBernoulli(0.toByte, 1.toByte)
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1285 m <- IntUniform(0, d).map{ _ + 1 }
1286 mc <- GenBernoulli(0.toByte, 1.toByte)
1287 } yield FishInheritance(fc, m.toByte, mc)
1288 }
1289
1290 private def equilibriumHelper(d: FamilyDescriptor)(lineageInFather: Boolean):
1291 Distribution[(IndividualIdx, ChromosomeIdx)] = {
1292 if (lineageInFather) {
1293 GenBernoulli((0.toByte, 0.toByte), (0.toByte, 1.toByte))
1294 } else {
1295 for {
1296 m <- IntUniform(0, d).map{ _ + 1 }
1297 res <- GenBernoulli(0,1).map{ x => (m.toByte, x.toByte) }
1298 } yield res
1299 }
1300 }
1301
1302 private val EquilibriumLineageInMaleProb = 0.5
1303 def equilibriumLineagePosition(d: FamilyDescriptor):
1304 Distribution[(IndividualIdx, ChromosomeIdx)] =
1305 Bernoulli(EquilibriumLineageInMaleProb).flatMap{
1306 l => equilibriumHelper(d)(l)
1307 }
1308
1309 override def fullCoordToString(
1310 f: FamilyIdx,
1311 i: IndividualIdx,
1312 c: ChromosomeIdx
1313 ) = "(%d,%s,%s)".format(f,
1314 (if (i == 0.toByte) ("" + Mars) else ("" + Venus + i)),
1315 c.toInt
1316 )
1317 }
1318
1319 /* #############################################################################
1320 [!] Alien-ants model
1321 ###########################################################################*/
1322
1323 // Ants have two different inheritance mechanisms for queen and drones.
1324 // Since drones are haploid, we can reuse 8 ConstInheritance 8 defined above,
1325 // but the queen needs yet another inheritance strategy.
1326
1327 /**
1328 * A queen inherits one chromosome from it's mother queen, and
1329 * one chromosome from a particularly lucky drone.
1330 * Since there is only one queen, we need only queen chromosome index.
1331 * Since every drone is haploid, we need only drone's individual index.
1332 */
1333 case class AntQueenInheritance(
1334 queenChromosomeIdx: ChromosomeIdx,
1335 luckyDroneIdx: IndividualIdx
1336 ) extends ChromosomeInheritance {
1337 def apply(ci: ChromosomeIdx) =
1338 if (ci == 0) (0.toByte, queenChromosomeIdx)
1339 else (luckyDroneIdx, 0.toByte)
1340 }
1341
1342 /**
1343 * Fertile individuals that contribute to the genome of a colony are:
1344 * - a single diploid female queen
1345 * - multiple haploid male drones
1346 * There can be between 8 minDrones 8 and 8 maxDrones 8 drones.
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1347 *
1348 * Queen has individual index 0.
1349 * Drones are numbered with indices 1 to 8 maxDrones 8 (inclusively).
1350 * Family descriptor 8 d 8 corresponds to a colony with 8 d 8 drones.
1351 * The descriptor 8 d=0 8 should never occur.
1352 */
1353 case class AntsColonyStructure(minDrones: Byte, maxDrones: Byte)
1354 extends FamilyStructure {
1355 require(minDrones > 0,
1356 "An ant colony needs at least one drone, but minDrones = " + minDrones)
1357 require(maxDrones >= minDrones,
1358 "Inconsistency: minDrones = " + minDrones +
1359 " maxDrones = " + maxDrones)
1360 def numParents(d: FamilyDescriptor) = (d.toInt + 1)
1361 def maxNumParents = maxDrones.toInt + 1
1362 def randomDescriptor = IntUniform(minDrones, maxDrones + 1).map{_.toByte}
1363 def familyToString(d: FamilyDescriptor) = Venus + ("" + Mars) * d.toInt
1364 def chromosomeInheritance(i: IndividualIdx, d: FamilyDescriptor):
1365 Distribution[ChromosomeInheritance] = {
1366 // queen and drones are quite different beasts... treat them separately
1367 if (i == 0) {
1368 // queen
1369 for {
1370 qci <- GenBernoulli(0.toByte, 1.toByte)
1371 lucky <- IntUniform(0, d).map{ _ + 1 }
1372 } yield AntQueenInheritance(qci, lucky.toByte)
1373 } else {
1374 // all drones are kind-of half-clones of the queen
1375 for {
1376 qci <- GenBernoulli(0.toByte, 1.toByte)
1377 } yield ConstInheritance(0.toByte, qci)
1378 }
1379 }
1380
1381 private def equilibriumHelper(d: FamilyDescriptor)(lineageInQueen: Boolean):
1382 Distribution[(IndividualIdx, ChromosomeIdx)] = {
1383 if (lineageInQueen) {
1384 GenBernoulli((0.toByte, 0.toByte), (0.toByte, 1.toByte))
1385 } else {
1386 IntUniform(0, d).map{ i => ((i + 1).toByte, 0.toByte) }
1387 }
1388 }
1389
1390 private val EquilibriumLineageInQueenProb = 2.0 / 3.0
1391 def equilibriumLineagePosition(d: FamilyDescriptor):
1392 Distribution[(IndividualIdx, ChromosomeIdx)] =
1393 Bernoulli(EquilibriumLineageInQueenProb).flatMap{
1394 l => equilibriumHelper(d)(l)
1395 }
1396
1397 override def fullCoordToString(
1398 f: FamilyIdx,
1399 i: IndividualIdx,
1400 c: ChromosomeIdx
1401 ) = "(%d,%s,%s)".format(f,
1402 (if (i == 0.toByte) ("" + Venus) else ("" + Mars + i)),
1403 c.toInt
1404 )
1405 }
1406
1407
1408
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1409
1410
1411
1412 /* #############################################################################
1413 [!] Code formatting
1414 ###########################################################################*/
1415
1416 /*
1417 * The code in this section makes some cosmetic changes on the code itself:
1418 * it skims through the file, finds all lines marked by a exclamation mark in
1419 * square brackets, and inserts a simple line-based index at the beginning of
1420 * the file.
1421 *
1422 * It has nothing to do with genetics or stochastic processes whatsoever.
1423 */
1424 import scala.io.StdIn.readLine
1425 val SectionTag = "]![".reverse
1426
1427 /** Reads source code from std-in, inserts an actualized index between
1428 * the INDEX-tags at the beginning of the file.
1429 */
1430 def createIndex(): Unit = {
1431 var line: String = ""
1432 var state = "beforeIndex"
1433 var beforeIndex: List[String] = Nil
1434 var afterIndex: List[String] = Nil
1435 var sections: List[(String,Int)] = Nil
1436 var lineNumber = 1
1437 while ({line = readLine(); line != null}) {
1438 state match {
1439 case "beforeIndex" => {
1440 if(line.contains("[INDEX]")) {
1441 state = "skippingIndex"
1442 }
1443 beforeIndex ::= line
1444 lineNumber += 1
1445 }
1446 case "skippingIndex" => {
1447 if (line.contains("[/INDEX]")) {
1448 state = "normal"
1449 afterIndex ::= line
1450 lineNumber += 1
1451 }
1452 }
1453 case "normal" => {
1454 if (line.contains(SectionTag)) {
1455 val title = line.drop(line.indexOf(SectionTag) + 3).trim
1456 sections ::= (title, lineNumber)
1457 }
1458 afterIndex ::= line
1459 lineNumber += 1
1460 }
1461 }
1462 }
1463 for (l <- beforeIndex.reverse) println(l)
1464 println()
1465 for ((title, lineNumber) <- sections.reverse) {
1466 val lineString = "" + (lineNumber + sections.size + 2)
1467 print(title)
1468 print("." * (80 - title.size - lineString.size))
1469 println(lineString)
1470 }
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1471 println()
1472 for (l <- afterIndex.reverse) println(l)
1473 }
1474
1475 /* #############################################################################
1476 [!] Parameter parsing
1477 ###########################################################################*/
1478
1479 // Just parsing command line arguments,
1480 // nothing particularly interesting here...
1481
1482 class ArgsOption(
1483 val names: List[String],
1484 val help: String,
1485 val default: String,
1486 val isFlag: Boolean = false,
1487 val regex: String = "[-_,0-9a-zA-Z()]+"
1488 ) {
1489 var value: Option[String] = None
1490 def immediateAction(): Unit = {}
1491 def get: String = value.getOrElse{default}
1492 def set(a: String): Unit = { value = Some(a) }
1493 override def toString = names.mkString("/")
1494 def verboseDescription: String = {
1495 names.sortBy(_.size).last + " = " + get
1496 }
1497 }
1498
1499 class ArgsOptions(opts: List[ArgsOption]) {
1500 def parse(arguments: Array[String]): Unit = {
1501 var justParsed: Option[ArgsOption] = None
1502 for (a <- arguments) {
1503 if (!justParsed.isEmpty && !justParsed.get.isFlag) {
1504 if (a.matches(justParsed.get.regex)) {
1505 justParsed.get.set(a)
1506 justParsed = None
1507 } else {
1508 println("Invalid argument for option '" + justParsed.get + "':")
1509 println(">>>" + a + "<<<")
1510 println("Expected regex: " + justParsed.get.regex)
1511 System.exit(1)
1512 }
1513 } else {
1514 opts.find{ o => o.names.contains(a) } match {
1515 case None => {
1516 println("Unrecognized option >>>" + a + "<<<")
1517 System.exit(1)
1518 }
1519 case Some(o) => {
1520 justParsed = Some(o)
1521 o.immediateAction()
1522 if (o.isFlag) o.set("true")
1523 }
1524 }
1525 }
1526 }
1527 }
1528
1529 /**
1530 * Returns modification of this 8 ArgsOptions 8 with one
1531 * additional, automatically generated help option.
1532 */
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1533 def withHelp(
1534 generalHelpIntro: String,
1535 generalHelpOutro: String
1536 ): ArgsOptions = {
1537 val helpOption = new ArgsOption(
1538 List("-h", "-?", "--help", "-help"),
1539 "Prints this help and exits", "false",
1540 true
1541 ) {
1542 override def immediateAction = {
1543 println(generalHelpIntro)
1544 for (o <- opts) {
1545 println(" " + o.names.mkString(" / "))
1546 val indented = (
1547 for (l <- o.help.split("\n")) yield (" " + l)
1548 ).mkString("\n")
1549 println(indented)
1550 }
1551 println(generalHelpOutro)
1552 System.exit(0)
1553 }
1554 }
1555 new ArgsOptions(helpOption :: opts)
1556 }
1557
1558 def apply(optName: String): String = {
1559 opts.find{_.names.contains(optName)} match {
1560 case Some(hit) => hit.get
1561 case None => {
1562 println("Could not find value for command line option " + optName)
1563 System.exit(0)
1564 throw new Exception
1565 }
1566 }
1567 }
1568
1569 def verboseDescription: String = {
1570 (for (o <- opts) yield {
1571 o.verboseDescription
1572 }).mkString("\n")
1573 }
1574 }
1575
1576 val createIndexOption = new ArgsOption(
1577 List("--create-index"),
1578 "Reads source code from STDIN, outputs formatted source code with added " +
1579 "index to STDOUT.", "false", true
1580 ) {
1581 override def immediateAction(): Unit = {
1582 createIndex()
1583 System.exit(0)
1584 }
1585 }
1586
1587 val cli = new ArgsOptions(List(
1588 new ArgsOption(List("--pedigrees","-p"),
1589 "Number of generated pedigrees.\nDefault: '-p 10'", "10",
1590 false, "[1-9][0-9]*"),
1591 new ArgsOption(List("--coalescents","-c"),
1592 "Number of sampled coalescents.\nDefault: '-c 256'", "256",
1593 false, "[1-9][0-9]*"),
1594 new ArgsOption(List("--sample-size","-n"),
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1595 "Sample size.\nDefault: '-n 2'", "2",
1596 false, "[1-9][0-9]*"),
1597 new ArgsOption(List("--num-families","-N"),
1598 "Number of families per generation.\nDefault: '-N 100'", "100",
1599 false, "[1-9][0-9]*"),
1600 new ArgsOption(List("--num-families-variation"),
1601 "Relative variation of number of families.\nDefault: 0\n" +
1602 "Examples: '--num-families 1000 --num-families-variation 0.5' will \n" +
1603 "produce a pedigree where the number of families per generation varies\n" +
1604 "between 500 and 1500. Accepts only numbers from [0,1).",
1605 "0.0", false, "0\\.[0-9]+"
1606 ),
1607 new ArgsOption(List("--model","-m"),
1608 "Family model. Available options are:\n" +
1609 " Meme\n" +
1610 " Duke\n" +
1611 " Fish(<minFemales>,<maxFemales>)\n" +
1612 " Ants(<minDrones>,<maxDrones>)\nDefault: '-m Meme'\n" +
1613 "Examples: '-m Duke', '-m Fish(7,15)', '-m Ants(10,20)'",
1614 "Meme", false,
1615 """(Meme)|(Duke)|(Fish\([0-9]+,[0-9]+\))|(Ants\([0-9]+,[0-9]+\))"""
1616 ),
1617 new ArgsOption(List("--exp-1-cdf"),
1618 "Outputs values of distribution function of Exp_1 in the first column.",
1619 "false", true
1620 ),
1621 new ArgsOption(List("--mrca-ecdf"),
1622 "Output values of empirical cumulative distribution \n" +
1623 "function of the MRCA time. One column per pedigree is produced. ",
1624 "false", true
1625 ),
1626 new ArgsOption(List("--mrca-avg"),
1627 "Output average MRCA time (one for each pedigree)", "false", true
1628 ),
1629 new ArgsOption(List("--verbose","-v"),
1630 "Generates verbose output.", "false", true),
1631 new ArgsOption(List("--show-environment"),
1632 "Dumps first 'g' populations and parent family choices.\n" +
1633 "Works only in verbose mode.\n" +
1634 "It's preferable to set '-p 1' on multicore machines, otherwise the \n" +
1635 "output for different pedigrees can get scrambled.\n" +
1636 "Don't use it with large 'N'.\n" +
1637 "Default: '--show-environment 0'\n" +
1638 "Example: '--show-environment 20' shows first 20 generations",
1639 "0", false, "[1-9][0-9]*"),
1640 new ArgsOption(List("--track-progress"),
1641 "Prints progress information to STDERR.\n" +
1642 "Looks really cool with multi-core CPU's.", "false", true),
1643 new ArgsOption(List("--comment"),
1644 "Prepends the specified prefix to each line of verbose output.\n" +
1645 "Try '--comment \"#\"' for gnuplot or '--comment \"%\"' for LaTeX",
1646 "%", false, ".+"
1647 ),
1648 new ArgsOption(List("--plot-resolution"),
1649 "Step width for ECDF plots. Default: '--plot-resolution 0.01'",
1650 "0.01",
1651 false,
1652 "[0-9]+(\\.[0-9]+)?"
1653 ),
1654 new ArgsOption(List("--plot-max"),
1655 "Step width for ECDF plots. Default: '--plot-max 3.0'",
1656 "3.0",
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1657 false,
1658 "[0-9]+(\\.[0-9]+)?"
1659 ),
1660 new ArgsOption(List("--only-populations"),
1661 "Don't simulate any coalescents. Just generate the populations, \n" +
1662 "output intrinsic time and number of families (two columns).",
1663 "false",
1664 true
1665 ),
1666 new ArgsOption(List("--only-coalescence-probabilities"),
1667 "Don't simulate any coalescents and ignores all other settings. \n" +
1668 "Just print the coalescence \n" +
1669 "probabilities conditioned on the event that two lineages hit \n" +
1670 "the same family for all available models.",
1671 "false",
1672 true
1673 ),
1674 createIndexOption
1675 )).withHelp(
1676 "Simulates gene genealogies in fixed pedigrees.\n Available options are:",
1677 "\nA typical invocation might look as follows: \n\n" +
1678 " scala coalescentSimulation.scala \\\n" +
1679 " --sample-size 2 --num-families 100 --num-families-variation 0.75 \\\n" +
1680 " --model 'Ants(5,10)' --pedigrees 20 --coalescents 1000 \\\n" +
1681 " --verbose --comment '#' \\\n" +
1682 " --exp-1-cdf --mrca-ecdf --track-progress\n\n" +
1683 "These settings describe a model with family structure of an ant colony\n" +
1684 "where a single queen and 5 to 10 males contribute to the genome of each\n" +
1685 "colony. \n" +
1686 " The number of colonies in each generation varies between 25 and 175. \n" +
1687 "This command would generate 20 different pedigrees, and simulate 1000\n" +
1688 "coalescents on each pedigree. \n" +
1689 "Each coalescent would start with 2 active lineages.\n" +
1690 " The program would output all the settings, prefixed by an '#'-symbol.\n" +
1691 "Then it would print a big table, with t-values in the first column, \n" +
1692 "CDF of Exp_1 in the second column, and then 20 further columns with \n" +
1693 "ECDF's of pair coalescence times (one column per pedigree)."
1694 )
1695
1696 /* #############################################################################
1697 [!] Entry point, running the experiment
1698 ###########################################################################*/
1699
1700 val augmentedArgs = if (args.isEmpty) Array("--help") else args
1701 cli.parse(augmentedArgs)
1702
1703 val verboseMode = cli("--verbose").toBoolean
1704 val trackProgress = cli("--track-progress").toBoolean
1705 val showEnvironment = cli("--show-environment").toInt
1706 val commentPrefix = cli("--comment")
1707 def printVerbose(s: String): Unit = if (verboseMode) {
1708 println(s.split("\n").map{l => commentPrefix + " " + l}.mkString("\n"))
1709 }
1710 def printProgress(s: String): Unit = if (trackProgress) {
1711 System.err.println(s)
1712 }
1713
1714 // dump the settings if necessary
1715 printVerbose(cli.verboseDescription)
1716
1717 val numFamilies = cli("--num-families").toInt
1718 val variation = cli("--num-families-variation").toDouble
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1719 if (variation < 0.0 || variation >= 1.0) {
1720 println("Invalid --num-families-variation: " + variation +
1721 " (expected 0 <= x < 1)")
1722 System.exit(1)
1723 }
1724 val plotMax = cli("--plot-max").toDouble
1725
1726 val numFamiliesProcess = if (variation == 0.0) {
1727 printVerbose("Number of families is constant " + numFamilies)
1728 new DeterministicFunction[Int] { def apply(t: Int) = numFamilies }
1729 } else {
1730 val minFamilies = (numFamilies * (1 - variation)).toInt
1731 val maxFamilies = (numFamilies * (1 + variation)).toInt
1732 // 2.0 is to keep it crashing into walls frequently,
1733 // square root is to keep the relative variance roughly the same at all
1734 // time scales.
1735 val jumpSize = 2.0 * math.sqrt(numFamilies)
1736 printVerbose("Number of families is a bounded random walk \n" +
1737 "with values between " + minFamilies + " and " + maxFamilies + "\n" +
1738 "making jumps of size " + jumpSize)
1739 (new BoundedRandomWalk(minFamilies, maxFamilies, jumpSize)).mapPointwise{
1740 _.toInt
1741 }
1742 }
1743
1744 val familyStructure = {
1745 val model = cli("--model").trim
1746 if (model == "Meme") {
1747 printVerbose("Family structure: 'Meme', all families look the same.")
1748 MemeFamilyStructure
1749 } else if (model == "Duke") {
1750 printVerbose("Family structure: 'Duke', all families look the same.")
1751 DukeFamilyStructure
1752 } else if (model.startsWith("Fish") || model.startsWith("Ants")) {
1753 val modelName = model.take(4)
1754 val intParams = model.drop(5).dropRight(1).split(",").map(_.toInt)
1755 printVerbose(
1756 "Chosen model: '" + modelName +
1757 "' with parameters: " + intParams.mkString(" ")
1758 )
1759 if (intParams.size != 2) {
1760 println("Expected 2 integer params, but got " + intParams.size)
1761 System.exit(1)
1762 }
1763 if (!intParams.forall{p => p >= 0 && p < 127}) {
1764 println("Invalid family model params: expected values between 0 and 126")
1765 System.exit(1)
1766 }
1767 val minOpp = intParams(0).toByte
1768 val maxOpp = intParams(1).toByte
1769 if (modelName == "Fish") {
1770 FishFamilyStructure(minOpp, maxOpp)
1771 } else if (modelName == "Ants") {
1772 AntsColonyStructure(minOpp, maxOpp)
1773 } else {
1774 throw new Exception(
1775 "Unrecognized parameterized model name: " + modelName)
1776 }
1777 } else {
1778 throw new Exception("Unrecognized model: " + model)
1779 }
1780 }
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1781
1782 val generationsProcess = randomPopulationHistory(
1783 numFamiliesProcess,
1784 familyStructure
1785 )
1786
1787 val numPedigrees = cli("--pedigrees").toInt
1788 val numCoalescents = cli("--coalescents").toInt
1789 val sampleSize = cli("--sample-size").toInt
1790
1791 val statMrcaEcdf = cli("--mrca-ecdf").toBoolean
1792 val statMrcaAvg = cli("--mrca-avg").toBoolean
1793
1794 // run experiment only if it's really required...
1795 val simulateCoalescents = statMrcaEcdf || statMrcaAvg
1796 val simulateOnlyPopulations = cli("--only-populations").toBoolean
1797 val showOnlyCoalescenceProbs = cli("--only-coalescence-probabilities").toBoolean
1798
1799 if (simulateOnlyPopulations && simulateCoalescents) {
1800 println("No coalescents can be simulated when option --only-populations " +
1801 "is active. Please remove --mrca-ecdf, --mrca-avg and all other flags " +
1802 "that require simulation of coalescents."
1803 )
1804 System.exit(2)
1805 }
1806
1807 if (showOnlyCoalescenceProbs && simulateCoalescents) {
1808 println("No coalescents can be simulated when " +
1809 "option --only-coalescence-probabilities " +
1810 "is active. Please remove --mrca-ecdf, --mrca-avg and all other flags " +
1811 "that require simulation of coalescents."
1812 )
1813 System.exit(3)
1814 }
1815
1816 // This is the main experiment: simulation of coalescents in fixed pedigrees
1817 if (simulateCoalescents) {
1818
1819 val experimentStartTime = System.currentTimeMillis
1820 val pedigreeProgress = new Array[Double](numPedigrees)
1821 var lastProgressDisplay = experimentStartTime
1822 def showPedigreeProgress(force: Boolean = false): Unit = {
1823 if (trackProgress) {
1824 val now = System.currentTimeMillis
1825 if (now - lastProgressDisplay > 250 || force) {
1826 lastProgressDisplay = now
1827 printProgress("Progress after " + (now - experimentStartTime) + " ms :")
1828 for (pIdx <- 0 until numPedigrees) {
1829 val percentageFloat = pedigreeProgress(pIdx) * 100
1830 val percentage = percentageFloat.toInt
1831 printProgress(
1832 "%4d ".format(pIdx) + ("#" * percentage) +
1833 (" " * (100 - percentage)) + " " +
1834 "%6.2f %%".format(percentageFloat)
1835 )
1836 }
1837 }
1838 }
1839 }
1840
1841 // each pedigree can be treated completely independently -> parallelize
1842 val statsForAllPedigrees = for (pIdx <- (0 until numPedigrees).par) yield {
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1843 var labeledStats: List[(String,Statistic[StatesHoldingTimes, _])] = Nil
1844 if (statMrcaEcdf) {
1845 labeledStats ::=
1846 ("--mrca-ecdf", (new EcdfStatistic()).prepend{ tree => tree.mrcaTime })
1847 }
1848 if (statMrcaAvg) {
1849 labeledStats ::=
1850 ("--mrca-avg", (new RealAverage()).prepend{ tree => tree.mrcaTime })
1851 }
1852
1853 val fixedGenerations = generationsProcess.sample
1854
1855 val intrinsicTime = virtualTime(
1856 fixedGenerations,
1857 WrightFisherFactory,
1858 familyStructure
1859 )
1860
1861 val fixedPedigree =
1862 randomPedigree(fixedGenerations, WrightFisherFactory).sample
1863
1864 if (showEnvironment > 0) {
1865 printVerbose("Random environment " + pIdx)
1866 printVerbose("Generations: ")
1867 for (exampleGen <- fixedGenerations.take(showEnvironment))
1868 printVerbose(exampleGen.toString)
1869 printVerbose("Pedigree: ")
1870 for (examplePfc <- fixedPedigree.take(showEnvironment))
1871 printVerbose(examplePfc.toString)
1872 }
1873
1874 val coalescentFullLaw = partitionCoalescentHistory(
1875 sampleSize,
1876 fixedPedigree
1877 )
1878 val coalescentLaw = for (path <- coalescentFullLaw) yield {
1879 StatesHoldingTimes(sampleSize, path, intrinsicTime)
1880 }
1881 for (cIdx <- 0 until numCoalescents) {
1882 val coalescentRealization = coalescentLaw.sample
1883 for ((_,s) <- labeledStats) {
1884 s.consume(coalescentRealization)
1885 }
1886 pedigreeProgress(pIdx) = (cIdx + 1) / numCoalescents.toDouble
1887 if (cIdx % 10 == 0) showPedigreeProgress()
1888 }
1889 labeledStats
1890 }
1891 showPedigreeProgress(true)
1892 val experimentEndTime = System.currentTimeMillis
1893 val experimentTime = (experimentEndTime - experimentStartTime) / 1000.0
1894
1895 printVerbose("Total time = %10.2f sec = %10.2f min".format(
1896 experimentTime, experimentTime / 60.0))
1897
1898 // output results of the statistics
1899 val plotResolution = cli("--plot-resolution").toDouble
1900 if (plotResolution <= 0.0) {
1901 println("Non-positive plot resolution: " + plotResolution)
1902 System.exit(1)
1903 }
1904
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1905 val exp1cdf = cli("--exp-1-cdf").toBoolean
1906 def selectStats[Y](label: String): List[Statistic[StatesHoldingTimes,Y]] = {
1907 (for {
1908 labeledStats <- statsForAllPedigrees
1909 (statLabel, stat) <- labeledStats
1910 if (statLabel == label)
1911 } yield stat.asInstanceOf[Statistic[StatesHoldingTimes, Y]]).toList
1912 }
1913
1914 if (statMrcaAvg) {
1915 printVerbose("Results --mrca-avg:")
1916 for (s <- selectStats("--mrca-avg")) {
1917 println(s.result)
1918 }
1919 }
1920
1921 if (statMrcaEcdf) {
1922 printVerbose("Results --mrca-ecdf:")
1923 val ecdfs = selectStats[EmpiricalReal]("--mrca-ecdf").map{_.result}
1924 val numSteps = (plotMax / plotResolution).toInt
1925 for (k <- (0 to numSteps)) {
1926 val t = k * plotResolution
1927 printf("%2.6f ", t)
1928 if (exp1cdf) {
1929 printf("%2.6f ", 1 - math.exp(-t))
1930 }
1931 for (ecdf <- ecdfs) {
1932 printf("%2.6f ", ecdf.cdf(t))
1933 }
1934 println()
1935 }
1936 }
1937 }
1938
1939 // Simulating only populations: printing
1940 // a columnt with virtual time, and a column with varying
1941 // number of families 8 (N_g)_g 8 .
1942 if (simulateOnlyPopulations) {
1943 printVerbose("Results --only-populations " +
1944 "(intrinsic time, number of families):"
1945 )
1946 val fixedGenerations = generationsProcess.sample
1947 val intrinsicTime = virtualTime(
1948 fixedGenerations,
1949 WrightFisherFactory,
1950 familyStructure
1951 )
1952 for ((t,g) <- intrinsicTime zip fixedGenerations) {
1953 if (t > plotMax) {
1954 System.exit(0) // enough, just quit
1955 } else {
1956 printf("%2.6f %2.6f\n".format(t, g.numFamilies.toDouble / numFamilies))
1957 }
1958 }
1959 }
1960
1961 /* #############################################################################
1962 [!] Sanity checks for theoretical formulas
1963 ###########################################################################*/
1964
1965 if (showOnlyCoalescenceProbs) {
1966 println("Ants")
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1967 for (maxDrones <- 1 to 10) {
1968 for (minDrones <- 1 to 5) {
1969 if (maxDrones < minDrones) {
1970 printf("(------,------) ")
1971 } else {
1972 val fs = AntsColonyStructure(minDrones.toByte, maxDrones.toByte)
1973 val theoreticalValue =
1974 (2 + (minDrones to maxDrones).map{
1975 x => 1.0/x
1976 }.sum / (maxDrones - minDrones + 1)) / 9
1977 val automaticValue =
1978 (for {
1979 descr <- fs.randomDescriptor
1980 firstLineage <- fs.equilibriumLineagePosition(descr)
1981 secondLineage <- fs.equilibriumLineagePosition(descr)
1982 } yield (firstLineage == secondLineage)).prob{ b => b }
1983 printf("(%5.4f,%5.4f) ", theoreticalValue, automaticValue)
1984 }
1985 }
1986 println()
1987 }
1988 println("Fish")
1989 for (b <- 1 to 10) {
1990 for (a <- 1 to 5) {
1991 if (b < a) {
1992 printf("(------,------) ")
1993 } else {
1994 val fs = FishFamilyStructure(a.toByte, b.toByte)
1995 val theoreticalValue =
1996 (1 + (a to b).map{
1997 x => 1.0/x
1998 }.sum / (b - a + 1)) / 8
1999 val automaticValue =
2000 (for {
2001 descr <- fs.randomDescriptor
2002 firstLineage <- fs.equilibriumLineagePosition(descr)
2003 secondLineage <- fs.equilibriumLineagePosition(descr)
2004 } yield (firstLineage == secondLineage)).prob{ b => b }
2005 printf("(%5.4f,%5.4f) ", theoreticalValue, automaticValue)
2006 }
2007 }
2008 println()
2009 }
2010
2011 }

111





Bibliography

[1] Patrick Billingsley. Convergence of Probability Measures. Wiley Interscience,
second edition edition, 1999.

[2] Richard Durrett. Probability Models for DNA Sequence Evolution. Probability
and its applications. Springer, second edition edition, 2008.

[3] Michèle Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis, volume 915 of Lecture
Notes in Mathematics, pages 68–85. Springer Berlin Heidelberg, 1982.

[4] Achim Klenke. Wahrscheinlichkeitstheorie. Springer, second edition edition,
2008.

[5] Zhi Yong Liu, Zi Long Wang, Wei Yu Yan, Xiao Bo Wu, Zhi Jiang Zeng, and
Zachary Y. Huang. The sex determination gene shows no founder effect in the
giant honey bee, apis dorsata. PLoS ONE, 7(4):e34436, 04 2012.

[6] M. Möhle. A convergence theorem for markov chains arising in population
genetics and the coalescent with selfing. Adv. Appl. Prob, 30:493–512, 1998.

[7] Martin Möhle. Stochastische populationsgenetik, Wintersemester 2007/2008.

[8] Martin Möhle and Serik Sagitov. A classification of coalescent processes for
haploid exchangeable population models. Ann. Probab., 29(4):1547–1562, 10
2001.

[9] Martin Möhle and Serik Sagitov. Coalescent patterns in diploid exchangeable
population models. Journal of Mathematical Biology, 47(4):337–352, 2003.

[10] M. R. Morris O. Rios-Cardenas. volume VIII of Tropical Biology and Conser-
vation Management. Encyclopedia of Life Support Systems (EOLSS).

[11] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima
Press, 2008.

[12] John Wakeley, Leandra King, Bobbi S. Low, and Sohini Ramachandran. Gene
genealogies within a fixed pedigree, and the robustness of Kingman’s coales-
cent. Genetics, 190:1433–1445, April 2012.

113


	Introduction
	Background
	Motivation
	Organization of the thesis

	Preliminaries
	Sets and functions
	Skorokhod space
	Laplace Transform

	Coalescents in Fixed Pedigrees
	Cannings model with Mendelian randomness
	Main result
	States and holding times representation
	State spaces
	Functions Phi
	Limiting behavior of two coalescents on common graph
	Limiting behavior of a single coalescent
	Convergence in Skorokhod space
	Putting it all together

	Simulations
	Simulation framework
	Complex family structures
	Panmictic diploid model as monogamous haploid model
	Monogamous families of diploid individuals
	Polygynous fish
	Eusocial insects

	Varying population size

	Conclusion
	Appendices
	Plots
	Source code

