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A B ST R AC T

One of the great challenges in modern-day physics is to determine the
properties of quantum many-body systems. In particular, we try to de-
scribe macroscopic systems by their fundamental microscopic interac-
tions. Currently, we still lack the tools to tackle this task in a general
fashion since even simple Hamiltonians give rise to very complex and
strongly correlated behaviour of the system.
Since we are only able to describe very few systems analytically, we
utilise numerical techniques to determine the properties of many-body
systems. Exact numerical methods, like exact diagonalization, suffer from
the problem that the Hilbert space of a system scales exponentially
with its size. Thus, efficient numerical approximations are needed to
describe large systems. In recent years, many of these numerical tech-
niques have been developed, e.g. quantum Monte Carlo or series expan-
sion. However, there are still systems which are very hard to manage.
Systems with very strong correlations and geometric frustration are
amongst the hardest problems and many methods fail in describing
these systems.
Here we focus on a rather new numerical method which is based on
the tensor network description of a quantum many-body system. This
method exploits the fact, that the ground states of short-ranged Hamil-
tonians lie in a low-entanglement region of the corresponding Hilbert
space. Tensor network states have the useful property that they lie in
this region by construction and therefore have been shown to be a very
useful tool to represent the low-energy states of local Hamiltonians.
In this thesis we will first explain the used iPEPS algorithm which is
based on the projected entangled pair states (PEPS) ansatz for many-body
systems. This algorithm can be used to calculate the ground state prop-
erties of quantum systems on infinite two-dimensional lattices. After-
wards we will benchmark this algorithm with well-known and well
studied systems, and then use it to tackle models which are as of now
not fully understood. Specifically, we will deal with the Heisenberg
model on the kagome lattice. This model has been analysed with many
different techniques but still faces many important challenges. We will
investigate this spin model for different spin values, and will provide
legitimate results where other methods failed.
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Z U SA M M E N FA S S U NG

Eine große Herausforderung in der modernen Physik ist es, die Eigen-
schaften von quantenmechanischen Vielteilchensystemen zu bestim-
men. Dabei versucht man, makroskopische Systeme durch ihre funda-
mentalen mikroskopischen Wechselwirkungen vollständig zu beschrei-
ben. Momentan fehlen jedoch die passenden Werkzeuge, um solch ein
Problem im Allgemeinen zu lösen, da selbst einfache Hamiltonopera-
toren sehr komplexes und stark korreliertes Verhalten hervorbringen.
Da nur sehr wenige Systeme eine analytische Beschreibung zulassen,
nutzen wir numerische Techniken, um die Eigenschaften von Vielteil-
chensystemen zu bestimmen. Exakte numerische Methoden, wie Exak-
te Diagonalisierung des Hamiltonoperators, leiden unter dem Problem,
dass der Hilbertraum des Systems exponentiell mit der Systemgröße
anwächst. Daher benötigt man effiziente numerische Approximatio-
nen, um große Systeme zu beschreiben. In den letzten Jahrzehnten
wurden viele numerische Methoden entwickelt, wie z.B. Quanten-Monte-
Carlo. Leider gibt es immer noch Systeme die nur schwer für einige
dieser Methoden zugänglich sind. Besonders Systeme mit starken Kor-
relationen und geometrischer Frustration gehören zu den schwersten
Problemen, da viele Methoden es nicht schaffen, solche Systeme kor-
rekt zu beschreiben.
In dieser Arbeit legen wir unser Augenmerk auf eine eher neue nume-
rische Methode, welche auf der Beschreibung des Quantenzustandes
durch Tensor-Netzwerke basiert. Diese Methode nutzt aus, dass der
Grundzustand lokaler Hamiltonoperatoren in einem Bereich geringer
Verschränkung des Hilbertraums liegt. Tensor-Netzwerk-Zustände ha-
ben die intrinsische Eigenschaft genau in diesem Bereich zu liegen und
sind deshalb sehr nützlich um Grundzustände lokaler Hamiltonopera-
toren darzustellen.
In dieser Arbeit erklären wir zuerst den verwendeten iPEPS-Algorith-
mus, welcher auf dem projected entangled pair states (PEPS)-Ansatz für
Vielteilchensysteme basiert. Dieser Algorithmus eignet sich sehr gut
zum Berechnen der Grundzustandseigenschaften von zweidimensio-
nalen Quanten-Gitter-Systemen. Anschließend werden wir den Algo-
rithmus mit Hilfe gut bekannter und ausführlich studierter Modelle
benchmarken, bevor wir ihn zur Untersuchung weniger bekannter Mo-
delle benutzen. Dabei handelt es sich um das Heisenberg-Modell auf
dem Kagome-Gitter mit verschiedenen Spinwerten, welches zwar be-
reits mit vielen Methoden angegangen wurde, aber noch nicht voll-
kommen verstanden ist. Deshalb versuchen wir, schlüssige Ergebnisse
mit unseren Methoden dort zu erzielen, wo andere Methoden versagt
haben.
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Part i

I N T RO D U C T I O N A N D T H E O RY





1
I N T RO D U C T I O N

Even with all the advances in computational science and the larger
amounts of computational resources available today, it is still a chal-
lenging problem to determine the properties of a quantum many-body
system. A better understanding of such systems would give rise to
great advances in many other fields, like material science, condensed
matter physics and quantum field theory. However, it is very hard to
treat such large systems since the complexity scales exponentially with
the number of particles.
This makes it incredibly hard to calculate the properties of a macro-
scopic ensemble of many particles from the microscopic description of
the individual components. Due to this problem, Feynman suggested
in 1982 [18] that one should put the peculiarities of quantum mechanics
to good use by exploiting these properties to simulate complex quan-
tum systems with other quantum systems, which are simpler and eas-
ier to control. This method would be exponentially faster compared to
the calculations with a classical Turing machine. Hence people have
been trying to build a quantum simulator of reasonable size to simu-
late such systems for many years.
This proposition was intriguing not only from an experimental point
of view, but also from a theoretical one. It gave rise to a completely new
field of physics: quantum information. In the early beginnings of this
field, it mostly took advantage from the results and methods which
were known from other fields. However, over time completely new
methods were developed within the context of quantum information
which are now finding application in many other fields like quantum
chemistry or even string theory[55].
The reason for this is the fact, that quantum information has developed
a detailed study of quantum entanglement which is a purely quantum
property without any classical analogy. It describes the correlation be-
tween parts of a quantum system. It is a measure of how the measure-
ment of one part influences the measurement of the other one. Because
of this correlation, which does not have to be local, entanglement was
very controversial at the beginnings of quantum mechanics. Einstein
called it a “spooky interaction” and formulated together with Podolsky
and Rosen the so-called EPR-paradox[15] because they were not able
to accept the concept of non-locality. This paradox should show that
quantum mechanics was incomplete and some physics was still miss-
ing which would be accounted for by some missing variables. To set-
tle this question, Bell[3] derived some inequalities which, when tested
experimentally, would verify if hidden variables exist or quantum me-
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4 introduction

chanics is complete. The following experiments [2] showed that the
Bell inequalities are violated, which means that entanglement is real
and quantum mechanics is complete.
Entanglement is a very useful tool which can be used to find ground
states of many-body systems. The reason for this, is that the ground
states of gapped, local Hamiltonians lie in a low-entanglement region
of the Hilbert space. This means that we only need to consider a very
small subspace of the enormous Hilbert space to find the ground state
of a given Hamiltonian. Thus, it would be very useful to find a rep-
resentation of the quantum state which is systematically confined to
this low entanglement region. Such a representation is given by tensor
networks (TNs), which were developed quite recently as an ansatz for
quantum states of many-body systems with limited amounts of entan-
glement. The most well-known TN ansatz for a quantum state is the so
called matrix product state (MPS).
During the development of the TN ansatz, White[59] developed a vari-
ational method to find the ground state of certain systems based on the
methods from renormalization group. This method is known as density
matrix renormalization group (DMRG). Shortly afterwards it was noticed
that the DMRG algorithm could be expressed in the MPS formalism.
All of this gave rise to a lot of different methods and algorithms to de-
termine the quantum states of many-body systems, e.g. time-evolving
block decimation (TEBD).
In this thesis, we will use some of these methods which are based on
TNs to find the ground states of two dimensional systems. All the algo-
rithms which are used in this thesis are based on the projected entangled
pair states (PEPS) ansatz. This ansatz is the natural extension of the one-
dimensional MPS ansatz to two dimensions.
We will first give a short introduction into the important physical and
mathematical concepts (chapter 2) and then continue to introduce ten-
sor networks and the algorithms used in this thesis based on them
(chapter 3). We will describe how to obtain ground state approxima-
tions as well as expectation values for infinite two dimensional trans-
lationally invariant lattices based on the PEPS ansatz. In Part ii we
will study some well-known models to give a benchmark of the perfor-
mance of the algorithms. Once this benchmark is established, we will
study the Heisenberg model on the kagome lattice, which is still topic
to a lot of discussions, and show that PEPS can be used to investigate
the properties of highly frustrated systems (see Part iii).



2
BA S I C CO NC E P T S

2.1 entanglement

Einstein described entanglement as a “spooky interaction” at a dis-
tance [15]. It describes a correlation between two systems which only
exists on a quantum level. Imagine these two systems span the Hilbert
spaces H1 and H2. We say these two systems are entangled if the wave
function |ψ⟩ ∈ H1 ⊗H2 of the complete system cannot be written as a
product of pure states of the two Hilbert spaces:

|ψ⟩12 ̸= |φ⟩1 ⊗ |χ⟩2 with |φ⟩1 ∈ H1, |χ⟩2 ∈ H2 (2.1)

An example for such an entangled state is the state |ψ+⟩12 which is
given by

|ψ+⟩12 =
1√
2
(|0⟩1 |0⟩2 + |1⟩1 |1⟩2) . (2.2)

This non-locality, which is implied by quantum mechanics, was the
subject to a lot of discussion and scepticism and the so-called hidden
variable models (HVM) were created which did not have this implied
non-locality. To test between these different models, Bell[3] formulated
the so called Bell-inequalities. If they are violated, the HVM must be
untrue and only a non-local theory can describe nature. In 1982 the vi-
olation of the Bell-inequalities was experimentally shown[2] and thus
the HVM were proven to be incorrect and entanglement must be a part
of reality.
Nowadays entanglement is not only seen as a quantum mechanical ef-
fect but also as a useful resource.With the help of entanglement it is,
e.g. possible to construct schemes for quantum teleportation. This was
first proposed in [4] in 1993 and later proven experimentally[6]. With
the help of quantum teleportation it would be possible to construct
quantum repeaters which can be used to build a quantum information
network over the world giving rise to new forms of quantum encrypted
forms of communication [10, 16]. It is also possible to perform a quan-
tum teleportation over great distances. The longest distance achieved
for a teleportation so far is over 143 km between two Canary Islands
[35]. It is however not only possible to teleport the state of a single par-
ticle over a long distance, but also to teleport the quantum state of a
macroscopic ensemble [31].
A second use for entanglement is in the context of quantum computa-
tion. The elementary unit which is needed for quantum computation,
the so called qubit, is a two-level-system. For the algorithms, which can

5



6 basic concepts

be used with quantum computers, a highly entangled state of many
qubits is needed. Therefore entanglement is the key element in all the
algorithms for quantum computation.

2.2 quantum phase transitions 1

Consider a Hamiltonian H(g) which is defined on a certain lattice and
varies as a function of some dimensionless coupling g. We identify any
point of non-analyticity in the ground state energy at g = gc with a
phase transition. This non-analyticity can occur due to e.g. level cross-
ing of the energy bands.
We are mainly interested in second-order phase transitions, which occur
if the energy gap

Δ = E1(g)− E0(g) (2.3)

between the ground state and the first exited state vanishes at g = gc.
For this kind of phase transitions one finds in most cases that, as g
approaches gc, Δ vanishes as

Δ ∼ J |g− gc|β (2.4)

where β is also known as the critical exponent of the gap. This exponent
is universal, which means that it is independent of most of the details
of the Hamiltonian.
However, not only the energy gap vanishes, but also the correlation
length in the system diverges at g = gc in a very similar fashion and
one finds that

Δ ∝ ξ−z (2.5)

where z is also known as dynamic critical exponent.
To determine gc one usually does not have to calculate Δ itself, but it is
enough to calculate some local order parameter m which is m = 0 on
one side of gc and m ̸= 0 on the other side. The point where this value
turns to zero is the phase transition point gc.
Such phase transitions are usually also accompanied by a change of the
symmetries in the system. The phase with a non-zero order parameter
has less symmetries than the phase where the order parameter van-
ishes. This theory of phase transitions with a change of symmetries is
known as Landau’s theory of phase transitions.
It is a very general concept in many-body physics and also particle
physics that ground states often exhibit a phenomenon called sponta-
neous symmetry breaking. This means that the ground state itself lacks
certain symmetries which are present in the underlying Hamiltonian.
As examples of this symmetry breaking one can give the Ising model,

1 This chapter is based on [52]



2.3 singular value decomposition 7

the Heisenberg model or, according to particle physics, the whole uni-
verse.2
There are however phases of matter which go beyond this theory of
spontaneous symmetry breaking. Landau’s theory is a classical theory
and does not describe quantum mechanical effects. Quantum mechan-
ics however implies new kinds of orders due to non-local effects, which
go beyond Landau’s paradigm. Phases which have such a non-local
behaviour also exist in nature as the ground states of quantum many-
body systems. These systems can exhibit long-range quantum entan-
glement and develop topological order. This is a very non-local order
which is defined by topological features of the ground state. Such topo-
logical phases usually have a robust ground state degeneracy which
means that the different ground states cannot change into each other
under local perturbations. Due to these non-local properties it is not
possible to describe topological phases with the Landau theory and
therefore are of great interest. There are many proposals to use these
ground states to build topologically protected qubits for quantum com-
putation which would be stable against local perturbations [13]. With
this it would be possible to construct quantum computers which can
run at finite temperatures and do not need to operate near T = 0 K.

2.3 singular value decomposition

The singular value decomposition of a matrix describes the representa-
tion through the product of three specific matrices. It is similar to the
well-known eigenvalue decomposition of a matrix, but with slightly
different properties.
The singular value decomposition of a complexm× n-matrixM is given
by the product

M = UΣV† (2.6)

where

U is an isometric m×m-matrix (U†U = 1)

V† is the adjoint of an isometric n× n-matrix (V†V = 1)

Σ is a real diagonal m× n-matrix.

The matrix Σ has r ≤ min(m, n) positive real entries on its diagonal,
the so called singular values of M. These are uniquely determined by
M (though the matrices U and V are not). Thus Σ has the form

2 The Ising and Heisenberg model will be explained in more detail later in this thesis.



8 basic concepts

Σ =



λ1
...

. . . · · · 0 · · ·

λr
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...


(2.7)

where λ1 ≥ · · · ≥ λr > 0.
To calculate the singular values one can use the property

M†M = (VΣU†) · (UΣV†) = VΣΣV† (2.8)

which means that the singular values equal the square root of the eigen-
values of M†M.
Since the singular values can be arranged in a descending order within
Σ, this decomposition is sometimes used for truncating schemes within
tensor network algorithms (see sec. 3.5).

2.4 variational principle

Suppose we have a certain Hamiltonian H with a discrete spectrum (to
avoid complications about continuous spectra). From this we can write
the eigenvalue equation

Ĥ |ψE⟩ = E |ψE⟩ (2.9)

and from the spectral theorem we know that

∑
Ei∈Spec(H)

|ψEi⟩ ⟨ψEi | = 1. (2.10)

With these properties we want to determine the lower bound of the
expectation value of H with any quantum state |Ψ⟩. We can write the
expectation value as

⟨Ψ|H|Ψ⟩ = ∑
Ei,Ej∈Spec(H)

⟨Ψ|ψEi⟩ ⟨ψEi |H|ψEj⟩ ⟨ψEj |Ψ⟩ (2.11)

= ∑
Ei∈Spec(H)

Ei
∣∣⟨ψEi |Ψ⟩

∣∣2 (2.12)

≥ ∑
Ei∈Spec(H)

E0
∣∣⟨ψEi |Ψ⟩

∣∣2 = E0. (2.13)

Hence E0 represents a lower bound to the expectation value of H. We
can therefore find an upper bound to the ground state energy by search-
ing for the state |φ⟩ out of a certain set of states that gives the infimum
of the expectation value of H:

E0 ≤ ⟨φ|H|φ⟩
⟨φ|φ⟩ ∀ |φ⟩ . (2.14)
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By this principle, we can give upper bounds to the ground state en-
ergy by approximating the ground state with numerical methods and
search for the approximated one with the lowest expectation value of
the ground state energy.





3
T E N S O R N E T WO R K S 1

3.1 why tensor networks

Tensor networks have proven very useful as a numerical and analytical
tool to understand the properties of quantum many-body systems, es-
pecially strongly correlated systems. But since the amount of existing
numerical methods is quite large, one may wonder about the advan-
tages of tensor networks.
Every numerical technique has its own limitations. Quantum Monte
Carlo [39] has the sign problem, which restricts its usage for e.g. frus-
trated quantum spin systems; exact diagonalization of the Hamilto-
nian [12] can only be used for rather small systems; series expansion
[42] suffers from the limits of perturbation theory, etc. Of course TN
methods do also have their limitations, but this limit is quite different
from the ones mentioned above: the restriction is the amount of en-
tanglement in the system. Therefore TNs can be used to simulate new
models and explore new directions.
The Hilbert space of a quantum many-body system is very large. For
example, if you have a spin-1/2-system with N particles, the dimension
of the Hilbert space is 2N. This means that the Hilbert space grows ex-
ponentially with the number of particles in the system. Consider now
a typical physical many-body system, which is common in a lab, with
N ∼ 1023 (of the order of the Avogadro number). Thereby it follows
that the Hilbert space dimension is ∼ O(101023

), which is incredibly
large (the amount of atoms in the observable universe is estimated to
be ∼ 1080).
However not all states in the Hilbert space are equally relevant for us.
In nature it is found that the interaction between particles tends to be
local. One can show that the corresponding ground states of gapped
Hamiltonians with local interaction obey the so-called area law for the
entanglement entropy [11]. This means that the entanglement entropy
of a subsystem does not scale with the volume of the subsystem but
with its boundary (fig. 3.1). For an arbitrary state this is not given which
means that this area-law constraints the states which are relevant for
us.
Therefore the low-energy states of these Hamiltonians describe only
a very small, in fact exponentially small, corner of the Hilbert space
(see fig. 3.2). The advantage of TN states is that they obey the area-
law by construction. That means that they target directly the relevant
corner of the Hilbert space. However it has recently been shown that

1 This chapter is based on [46]

11
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B
A S ∼ ∂A

Figure 3.1: The entanglement entropy S of a subsystem A in B scales with the
boundary ∂A between A and B

Many-body Hilbert space

relevant corner

Figure 3.2: The relevant states of the Hilbert space which obey the area law
describe only a very small part of the large space of all states.

not every state in this area-law obeying region can be approximated
with TN states in the case of two or more dimensions[20]. However
the states, that cannot be approximated by TNs, are not eigenstates of
local Hamiltonians either and therefore not very relevant for the sys-
tems we are interested in. This makes TN a very powerful tool since
there is no need to be concerned with the complete Hilbert space, but
only with the states which lie in the relevant corner.

3.2 diagrammatic notation

This section will give an introduction to some of the mathematical con-
cepts which are used in TN methods. We will also define what a TN
state is, what TN diagrams are and how quantum states can be repre-
sented by these.
A tensor is a multi-dimensional array of complex coefficients. The rank
of such a tensor is given by the number of its indices. These tensors
can also be represented graphically in terms of tensor network diagrams
(fig. 3.3). The contraction over an index is given by the sum over all
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(a) (b)

(c) (d)

Figure 3.3: Tensor network diagrams of (a) scalar, (b) vector, (c) matrix and (d)
rank-3 tensor

A

B C

E

Figure 3.4: Tensor Network diagram of equation 3.2. It is a contraction of 4
tensors and 4 open indices.

the values of the shared indices of a set of tensors. This means that the
normal matrix product

Cαβ =
Dγ

∑
γ=1

AαγBγβ (3.1)

is the contraction over the shared index γ. Of course one can always
think of more complicated contractions like

Fαβγδ =
Dη

∑
η

Dσ

∑
σ

Dε

∑
ε

Dλ

∑
λ
AαηεBησβCσγελEλδ. (3.2)

Equation (3.2) can also be written as a tensor network diagram which
can be seen in figure 3.4. This TN diagram representation allows us
to handle the rather complicated equation (3.2) in a nice visual way.
However it is not only better to handle but one can also see some prop-
erties, which are not that obvious within the corresponding equations.
For example, the cyclic properties of the trace can easily be seen in the
tensor network diagram (see fig. 3.5).

Figure 3.5: Trace of product of 6 matrices. One can see directly the cyclic prop-
erties of the trace.
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3.3 tensor network description of quantum states

Now that the basic ideas of tensor networks are explained, let us see
how they can be used to describe quantum states of many-body sys-
tems. For that we consider a system which contains N particles within
a d-level system. Thus, the wave function can be written in the individ-
ual basis of the single particles |ir⟩ (ir = 1, . . . , d) and takes the general
form

|ψ⟩ = ∑
i1

∑
i2
· · ·∑

iN
Ci1i2···iN |i1⟩ |i2⟩ · · · |iN⟩ . (3.3)

The coefficientsCi1i2···iN can be seen as entries in a largeN-legged tensor
C. This is a very big tensor with O(dN) entries and rank N. For compu-
tational purposes this is a very inefficient description of the quantum
state, but with the help of TN states one can reduce the complexity by
giving an accurate description of the entanglement properties of the
state. Therefore one decomposes this one big tensor into a TN of many
smaller tensors with a smaller rank (see fig. 3.6).

i1 i2 iN· · ·

Ci1i2···iN A1 A2 AN· · ·

i1 i2 iN· · ·

Figure 3.6: The representation of the coefficients of a quantum state through
a tensor network. This particular form of a TN is a so-called matrix
product state (MPS)

This new TN representation of the quantum state |ψ⟩ is a more effi-
cient description from a computational point of view. The amount of
parameters does no longer scale exponentially, but rather polynomial
in the number of particles.
To determine the number of parameters ntot, one has to first think about
the number of parameters per tensor T. This is given by

n(t) = O
(

rank(T)

∏
αT

D(αT)

)
, (3.4)

where the product runs over all indices αT = 1, . . . , rank(T) of T, and
D(αT) is the size of the dimension which is corresponding to αT.
If the maximum of D(αT) is given by DT then this n(t) is given by

n(t) = O
(
Drank(T)
T

)
. (3.5)

This is the amount of parameters per tensor in the TN. Thus the total
amount of parameters is

ntot =
NTN

∑
T=1

n(T), (3.6)
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(a) (b)

Figure 3.7: Simple examples for a TN description of a quantum state. (a) ma-
trix product state (MPS) with periodic boundary conditions (b)
projected entangled pair state (PEPS) with open boundary condi-
tions

where NTN is the amount of tensors T in the TN. This amount needs to
be less than exponential in N to be useful for computational purposes.
This means that NTN = O(poly(N)) and if we combine all this we get

ntot = O(poly(N)poly(D)), (3.7)

where D is the maximum of all DT and we assume that the rank of each
tensor has an upper bound.
Simple examples for such a TN description of a quantum state can be
seen in fig. 3.7. However this efficient representation of a quantum
state does not come for free. By “gluing” the tensors together within
the tensor network one gets extra degrees of freedom. These are repre-
sented by the connecting indices among the tensors and they are called
the bond indices of the tensors which have a specific bond dimension.
These bond indices have an important physical meaning: they describe
the entanglement properties of the many-body state and additionally
give a quantitative measurement of the amount of quantum correla-
tions within the wave function.
To understand this better let us consider a pure state in the form

|ψprod⟩ = |φ1⟩ ⊗ |φ2⟩ ⊗ · · · ⊗ |φN⟩ (3.8)

for some |φk⟩. To represent such a product state with a TN, one would
have to represent each subsystem |φk⟩ with a separate tensor. Since the
total wave function is given by a product of such subsystems, the ten-
sors would be trivially connected with a bond dimension D = 1. If
there is some form of entanglement within the system, the connection
between the tensors will be non-trivial which means that a larger bond
dimension is needed to give an accurate description of the quantum
state.

3.4 area-law in tensor network states

The bond dimension is the limiting factor in the amount of entangle-
ment the tensor network can encompass and thus there must be an up-
per bound of entanglement which can be described by a certain bond
dimension. To determine this upper limit let us consider a subsystem
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L

L

out

in

|out(α)⟩

|in(α)⟩

Figure 3.8: Subsystem of a given TN, to calculate the amount of entanglement
between the two systems

of a TN 2 (see fig. 3.8) and calculate the entanglement entropy of this
block. Let us assume that all indices of the outer and inner system are
combined into one single index α = {α1α2 . . . α4L}. Thus the total wave
function is given by

|Ψ⟩ =
D4L

∑
α=1

|in(α)⟩ ⊗ |out(α)⟩ (3.9)

and the reduced density matrix of the inner part can be written as

ρin = ∑
α,α′

Xαα′ |in(α)⟩ ⟨in(α′)| (3.10)

where Xαα′ = ⟨out(α′)| |out(α)⟩. The maximal rank of the reduced den-
sity matrix is clearly given byD4L. If we considered the outer part the re-
sult would be the same. The entanglement entropy S = −tr(ρinlogρin)
is therefore bounded by the logarithm of the rank of ρin. This means
that

S(L) ≤ 4Llog(D). (3.11)

Equation (3.11) is nothing else than an upper-bound represented by
the area law for the entanglement entropy. Another way to look at it is
that the amount of “broken” links within the separation in the two sys-
tems is 4L and each of these “broken” links gives a log(D) maximum
contribution to the total entanglement entropy.

2 We will calculate everything for the case of a 2d PEPS, but the concept is still valid in
other dimension.
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3.5 numerical tn methods for infinite peps

Now that we established the usefulness of TNs, let us explore the nu-
merical methods which can be used to determine the TN state of the
ground state for a given Hamiltonian or to calculate expectation val-
ues.
All of the following algorithms are only valid for an infinite PEPS lat-
tice which is translationally invariant by construction. It is also possible
to consider finite PEPS for small lattices, where each lattice site is de-
scribed by a different tensor. This however is restricted to rather small
lattices.

3.5.1 Finding the ground state

There are different methods to calculate the ground state wave func-
tion for a certain Hamiltonian, e.g. imaginary time evolution or variational
optimization. Here we will focus on the imaginary time evolution since
this method is used in this thesis.
It is known that the ordinary time evolution of a quantum state is given
by

|Ψ(t)⟩ = e−itH |Ψ(0)⟩ . (3.12)

For the imaginary time evolution we make the transition t → −iτ, be-
cause for long imaginary times the resulting wave function tends to be
the ground state |E0⟩.

e−τH = ∑
j
e−Ejτ |Ej⟩ ⟨Ej| = e−E0τ

(
∑
j
e−(Ej−E0)τ |Ej⟩ ⟨Ej|

)
= e−E0τ

(
|E0⟩ ⟨E0|+ e−Δτ |E1⟩ ⟨E1|+ . . .

)
with Δ = E1 − E0

(3.13)

In the limit of infinite time (τ → ∞), this results in

e−τH ≈ e−E0τ |E0⟩ ⟨E0| . (3.14)

Hence

|E0⟩ = lim
τ→∞

e−τH |Ψ(0)⟩√
⟨Ψ(τ)|Ψ(τ)⟩

(3.15)

for any initial quantum state |Ψ(0)⟩ which has a non-zero overlap with
the ground state.
The basic idea is now to implement such an imaginary time evolu-
tion on TN states, e.g. PEPS, for a given Hamiltonian. The first step in
such an algorithm is to split the time evolution operator for a certain
timestep τ into many operators of very small timesteps so that

e−τH =
(
e−δτH

)m
(3.16)
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where m = τ/δτ ≫ 1. For the sake of simplicity let us assume that the
Hamiltonian only consists of two-body nearest neighbor terms and it
can be written as

H = ∑
⟨i,j⟩

hij (3.17)

where the sum goes over the nearest neighbors in the lattice. Thus the
time evolution operator is given by

e−δτH = e
−δτ ∑

⟨i,j⟩
hij

. (3.18)

Now we do a first-order Suzuki-Trotter expansion[54] to decompose the
operator into the product of many so-called two-body gates

e
−δτ ∑

⟨i,j⟩
hij

= ∏
⟨i,j⟩

e−δτhij +O(δτ2). (3.19)

This also gives us the two-body gate gij between the sites i and j

gij = e−δτhij . (3.20)

If we now combine all of the above, we find that the imaginary time
evolution can be approximated by letting U(δτ) = ∏⟨i,j⟩ gij act m ≫ 1
times on a given TN state. This process can be written as a TN diagram
and it can be seen for a one-dimensional system in figure 3.9. The ex-
tension into two dimensions is straight forward from this.

U(δτ)
gij gij gij gij

gij gij gij gij

Figure 3.9: Applying the two-body gates m times on the the initial one dimen-
sional TN state. The extension into more dimensions is straight
forward.

There are now two steps one has to perform to obtain the ground state
in the TN state form:

(1) applying U(δτ): applyU(δτ) to the given TN state |Ψ⟩ with bond
dimensionD. Afterwards one has a new TN state |Ψ̃⟩ = U(δτ) |Ψ⟩
with a new bond dimension D̃ ≥ D

(2) truncate: find a new state |Ψ′⟩which approximates |Ψ̃⟩ but with
the reduced bond dimension D
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This method of finding the ground state is known as the infinite time-
evolving block decimation (iTEBD). There are many ways to perform
these two steps which differ in the obtained accuracy and their effi-
ciency. Unfortunately the more accurate methods are less efficient in
respect to computational cost whereas more efficient methods tend to
be less accurate.
In the following we will explain a method called simple update, which
is used in this thesis to obtain the ground state for a 2x2 unit cell. An-
other method called the full update, which is not used in this thesis,
is explained in the appendix in section A.1. This method gives more
accurate results but requires more computational resources.
Very recently there was a proposal about a new method (the so-called
fast full update) which would be very accurate but much more efficient
as previous algorithms with the same accuracy [48].

3.5.2 Simple Update

Within the simple update the truncation of the larger bond dimension
is done via a singular value decomposition in the corresponding link.
We start from our PEPS with a 2x2 unit cell and translational invari-
ance as it can be seen in figure 3.10. For the simple update we choose
a PEPS with additional tensors λ which carry the information of a spe-
cific link in the form of singular values as shown in figure 3.10 (b).
Now we take only two tensors with the connecting λ of the unit cell
and apply the two-body gate gij on the connecting link. Then we com-
bine all four tensors into one large tensor with 8 indices. This large
tensor must be separated again to obtain the new updated tensors Γ̃A,
Γ̃B and λ̃ for the updated unit cell. Therefore we perform a singular
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Figure 3.10: PEPS with a 2x2 unit cell and translational invariance. On the left
side we see a PEPS which only consists of two tensors A and B.
Within the TN on the right side each link has an additional tensor
which carries specific information about this link in the form of
singular values.
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ΓA ΓB
λaλb λb

λc λd

λcλd
gij

θ

SVD

dD3

λ̃

Γ̃A Γ̃B Γ′A Γ′B

λ′a

D

λb λb

λc λd

λcλd

contraction

truncation

decompositio
n

Figure 3.11: TN diagram of the simple update. First one contracts all tensors
into one large tensor. Afterwards one has to perform a SVD to de-
compose this large tensor back into smaller tensors. The last step
is to truncate in the largest singular values to ensure that the bond
dimension does not grow with each step. The λ’s therefore carry
all the singular values corresponding to one specific link. Since all
λ’s get absorbed in the first step one has to extract them again in
the end from the new Γ′’s by multiplying with the corresponding
inverse.

value decomposition between the indices corresponding to ΓA and ΓB.
Afterwards we have again two separate tensors Γ̃A and Γ̃B and one in-
termediate tensor λ̃ which carries the singular values.
The bond dimension between λ̃ and the two updated tensors is now
larger than the original bond dimension between ΓA and ΓB and of
the order O(dD3). This means that we have to truncate this new bond
dimension because otherwise the required computational resources
would increase after each step.
For this reason, we truncate in the largest singular values of this decom-
position. After the truncation we remain with the updated tensors Γ′A,
Γ′B and λ′. This is the procedure to update one single link of the unit cell,
and so we rotate the lattice which now consists of these new tensors,
and repeat each step with another link. Since the lattice is translation-
ally invariant we only need to do this for one unit cell and can update
every tensor in the lattice afterwards.
This process is repeated iteratively until convergence is reached. The
resulting state now approximates the ground state of the given Hamil-
tonian. The complete process can be seen in the form of TN diagrams in
figure 3.11. This approach has only empirical justification since there is
no formal reason that it should give near-optimal results. However the
empirical results show that this method is very efficient and also gives
rather accurate results in some situations. Only close to quantum phase
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transitions the method struggles to give good results, because it only
takes the short range correlation between two tensors into account. It
does not consider the long range parts only visible in the environment
of the tensors, which is not taken into account here.

3.5.3 Calculating expectation values

As for finding the ground state for a given Hamiltonian in its TN rep-
resentation, there are many different methods to calculate the expec-
tation value of some observable for a TN state. For finite systems one
could always think of doing the exact contraction of the corresponding
tensor network like shown in figure 3.12.

(a) (b)

Figure 3.12: Tensor networks for calculating the expectation values for (a)
MPS and (b) PEPS

However for an infinite PEPS an exact contraction is not possible and
one must find a way to approximate the result.

3.5.3.1 Corner Transfer Matrix

One method is the so called directional corner transfer matrix (CTM) algo-
rithm [47]. This method approximates the infinite plane, or more pre-
cisely one corner of it, in one single tensor, the so-called corner transfer
matrix (see fig 3.13). We will only explain the CTM algorithm for con-
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Figure 3.13: Approximating the infinite plane through four corner transfer
matrices and two half-row and half-column transfer matrices.
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Figure 3.14: Tensor network diagram of the CTM algorithm. In (a) a x-move
is shown and (b) shows the renormalization scheme for the up-
dated tensors.

tracting an infinite plane, but the extension to two layers, as it is needed
to calculate expectation values for PEPS, is straight forward.
The goal of the CTM algorithm is to find the four fix-point tensors to
get an approximate environment G [⃗r]. This environment is given by the
simple TN consisting of the tensors G [⃗r] = {C1,T1,C2,T2,C3,T3,C4,T4},
where C1,C2,C3,C4 represent the four corner transfer matrices and the
two half-column and half-row matrices are given by T1, T2,T3, T4. The
corresponding TN diagram can be seen in figure 3.13.
To find these tensors one performs iteratively so called coarse-graining
moves into different directions (up, down, left, right) until the environ-
ment converges. For a given environment such a move consists of three
main steps which will be explained for a left move. They are also graph-
ically represented in figure 3.14 (a).

(1) insertion: Insert a new column out of the tensors T1, a and T3.

(2) absorption: Absorb this new column into the already existing
left border to obtain the new C̃1, T̃4 and C̃4.

(3) renormalization: Due to the fact that the dimension of the new
tensor is now larger than before one must renormalize with some
isometry Z (Z†Z = 1).

The choice of the isometry Z is very important to get accurate results,
but there is no canonical choice which yields the best result. One possi-
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Figure 3.15: Expectation value of some one-site observable

bility is to use the eigenvalue decomposition of the product of the four
CTM’s C̃1C2C3C̃4. However, here we consider the eigenvalue decom-
position of C̃1C̃†

1 + C̃4C̃†
4 = Z̃ΛZZ̃† instead as shown in figure 3.14 (b).

The isometry Z results from Z̃ by keeping the entries which correspond
to the D largest eigenvalues of ΛZ. Now one iterates the four moves un-
til the environment converges.
From this environment it is very easy to calculate expectation values.
The only thing that is left to do is to insert a tensor in the middle and
do a final contraction of the complete TN.
The tensor which is usually put in the middle of the environment is
the contraction of the PEPS-tensor with some operator. Since our TN
states are in general not normalized one must also compute the norm
of the state with the same method. The resulting expectation value is
then given by the ratio of two tensor networks which differ only in one
single tensor (figure 3.15). All of the explained steps above are only
valid for a unit cell of size one. However we use a larger 2x2 unit cell
within this thesis. The extension to a larger unit cell is straight forward
from the algorithm explained above and is described in more detail
within the appendix in section A.2.

3.5.3.2 Higher Order Tensor Renormalization Group Algorithm 3

Another way to calculate the expectation value for some observable is
to do a coarse-graining of the tensor network. For this coarse-graining
we contract the TN alternatingly along the horizontal (x-axis) and ver-
tical (y-axis) directions. This means that for each step we contract two
adjoining tensors along one axis into one single tensors M which repre-
sents one site in the coarse-grained lattice. Since the bond dimension
of the coarse-grained TN would increase after each iteration we must
truncate M into a lower rank tensor. This is done via truncation with

3 This method was proposed in [61]
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a higher order singular value decomposition (HOSVD)[32]. The resulting
decomposition yields

Mxx′yy′ = ∑
ijkl

SijklUL
xiUR

x′jU
U
ykU

D
y′l (3.21)

where each U is a unitary matrix. S is the so called core tensor of M
with the following properties

(1) orthogonality

⟨S:,j,:,:|S:,j′,:,:⟩ = 0 if j ̸= j′ (3.22)

(2) pseudo-diagonality

|S:,j,:,:| ≥
∣∣S:,j′,:,:

∣∣ if j < j′ (3.23)

where |S:,j,:,:| is the norm of this sub-tensor which is defined as the
square root of the sum over all squared elements. These norms have a
similar role as the singular values of a matrix. If we do a vertical move,
the two vertical indices do not change and do not need to be truncated.
Since the right leg of M is connected the left leg of an identical tensor
on the right neighbouring side, truncating one of the horizontal links
automatically truncates the other one as well. Now we must choose the
best way to truncate the horizontal bonds. Since these bonds are linked
we can truncate via UR or UL. Therefore we compare the norm of the
first and second index for all index values above D and we define

ε1 = ∑
i>D

|Si,:,:,:|2 (3.24)

and

ε2 = ∑
j>D

|S:,j,:,:|2 . (3.25)

By comparing ε1 and ε2 we can decide with which of the two corre-
sponding unitary matrices we must truncate to minimize the error. If
ε1 < ε2, we truncate the first dimension of S or the second dimension
of UL to D. In the other case we truncate the second dimension of S or
the second dimension of UR to D. This truncation scheme provides a
minimization of the truncation error.
After this step we update the local tensor via

M′ = ∑
ij
ŨixMijyy′Ũjx′ (3.26)

where Ũ = UL (or UR) if ε1 is smaller (or larger) than ε2. We repeat this
process now with alternating x- and y-moves until we find a fix-point
of the tensor network. This means that in the end we only have one ten-
sor left which describes the complete TN. The expectation value of the
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Figure 3.16: On the left side we see a vertical coarse graining move within the
HOTRG algorithm and the corresponding truncation scheme can
be seen on the right.

tensor network is then given by the contraction of a single tensor. Of
course one has to start with a tensor with some observable absorbed
to determine its expectation value and additionally calculate the corre-
sponding norm.
The algorithm explained above does not work for a double layered lat-
tice without further extensions. This means that in our case we must
first combine the bra and ket PEPS into one single tensor. This has the
disadvantage that the resulting bond dimension in this tensor network
is the dimension of the original PEPS squared. As a consequence of this
squaring, one can only use this method for rather small bond dimen-
sions (see sec. 3.5.4).

3.5.4 Computational Complexity

All the methods for calculating expectation values and ground states
have different computational complexity.
The computational cost of the tensor contractions and multiplications
is given by the number of computational cycles which are needed to
perform the operation. For the computational cost of a complete algo-
rithm we only keep track of the step with the highest cost.
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In general the computational cost of a simple matrix multiplication be-
tween two matrices Aαβ and Bβγ is of the order χα χβ χγ where χi is the
size of the corresponding dimension.
The memory requirement for such an operation is given by χα χβ +
χβ χγ + χα χγ. For the contraction of a complete tensor network with
many tensors the computational cost and the memory requirement are
strongly dependent on the contraction order of the network. Usually
one tries to minimize the time needed for finding ground states or ex-
pectation values by choosing the order of contraction with the lowest
computational cost. On the other hand one has to keep track of the
needed memory, since the contraction which optimizes the computa-
tional cost is not necessarily the most efficient one concerning the mem-
ory requirement.
By following the rules for determining the computational cost and mem-
ory usage we obtain the following values for the algorithms explained
above.

algorithm computational cost memory requirement

Simple Update O(d4q2D+ (dq)3) O(d4qD)
CTM O(χ2d2D7) O(χ2d2D4)

HOTRG O(D14) and O(χ7) O(D12) and O(χ6)

Table 3.1: The computational cost and memory requirement for the different
algorithms. d is the physical dimension, D the bond dimension of
the PEPS, q ≡ min(D3, dD) and χ the bond dimension of the envi-
ronment. In the case of the HOTRG algorithm the computational
cost scales with O(D14) in the very first step before the truncation
and with O(χ7) afterwards.

By comparing the different scalings of our methods one can easily see
that the HOTRG algorithm scales very badly in computational time
and memory usage. Therefore this algorithm can only be used for bond
dimensions smaller than six. For bond dimensions of six and larger
the memory usage exceeds the maximum amount of RAM which was
available during this thesis.
However, the HOTRG algorithm does not scale with the physical di-
mension of the model. Therefore it can be used to determine the expec-
tation values of systems with very large physical dimensions.
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T H E 2 D C L A S S I CA L I S I NG M O D E L

4.1 the model

The Ising model is one of the best-studied models in statistical physics.
It is used to describe ferromagnetism in solids by assuming that the
spins in the solid belong to a two level system and only neighbouring
sites interact with each other.
This interaction between two sites can be either ferromagnetic or anti-
ferromagnetic in nature. This depends, of course, on the system one is
looking at. In the further discussion in this thesis we will restrict our-
selves to the ferromagnetic case, where the parallel pairing of spins is
favoured.
In the classical case, we will look at this model for finite temperatures
and look for phase transitions. That a phase transition must occur can
easily be seen by looking at the cases of very large temperature and
vanishing temperature. At T = 0 the solution of this system becomes
trivial since it spontaneously breaks the Z2-symmetry of the up and
down spins and the system lies in a state in which all spins are aligned
either up or down. This means that we find a completely ordered state
at T = 0. For infinite temperature on the other hand the thermal fluc-
tuations become so large that we have a completely disordered state
which restores the inherent Z2-symmetry.
Since we have a completely ordered state on one side and a disordered
state on the other side there must be some sort of phase transition in
between. For the square lattice the model has been solved by Onsager
[45] and this phase transition point has been determined.
The fact that we have a phase transition at a finite temperature is rather
rare within two dimensions, since the Mermin-Wagner-Theorem [37]
states that continuous symmetries cannot be spontaneously broken at
finite temperatures for one and two dimensional systems. This means
that one will not find phase transitions at finite temperatures for sys-
tems with continuous symmetries. The Ising model however has a dis-
crete symmetry which allows for such a phase transition.

4.2 results

In this section we will discuss how the algorithms explained in chap-
ter 3 can be used to calculate the expectation values and correlation
functions for this classical system. Here we will consider the classical
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Q a a

= =

Figure 4.1: The partition function of the 2d classical Ising model can be as
the contraction of a 2d tensor network which only consists of one
tensor a on each site

Ising model on the infinite 2d square lattice. The interaction between
two neighbouring sites < r⃗,⃗ r′ > in this model is given by

K2(s, s′) = −ss′ (4.1)

and therefore the Hamiltonian K is given by

K({s}) = ∑
<⃗r,⃗r′>

−s[⃗r]s[⃗r
′]. (4.2)

The corresponding partition function is then given by

Z(β) = ∑
{s}

e−βK({s}) = ∑
{s}

∏
<⃗r,⃗r′>

e−βK2(s[⃗r],s[⃗r
′ ]) (4.3)

where β is the inverse temperature. If we defineQss′ = exp (−βK2(s, s′)),
we can express the partition function as the contraction of an infinite
2d tensor network specified by a single tensor a

aijkl = ∑
s
(
√
Q)is(

√
Q)js(

√
Q)ks(

√
Q)ls (4.4)

on every site, see fig. 4.1. From this partition function we can also calcu-
late expectation values or correlation functions. The expectation value
for any function f(s) of one spin is given by

⟨f(s[⃗r])⟩ = 1
Z(β) ∑

{s}
f(sr⃗)e−βK({s}). (4.5)

Up to the prefactor of 1/Z(β) this can also be written as the contraction
of an infinite 2d TN which is very similar to the TN of Z(β). The only
difference is that one has to replace the tensor a on site r⃗ with b,

bijkl = ∑
s
f(s)(

√
Q)is(

√
Q)js(

√
Q)ks(

√
Q)ls. (4.6)

Thus the expectation value is given by the ratio of the total contraction
of two tensor networks which only differ in one tensor. This is shown
in figure 4.2.
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Figure 4.2: The expectation value is given by the ratio of two tensor networks
which only differ in the tensor on site r⃗

Since the only difference between these two tensor networks is just one
single tensor, we can calculate the environment using the CTM algo-
rithm and use it for both contractions since only the tensor in the mid-
dle of the environment changes.
Using this one can calculate the magnetization per site m ≡ ⟨s[⃗r]⟩ and
compare it to the exact solution[45] which is given by

m =
(

1 − sinh(2β)−4
) 1

8 (4.7)

The numerical values which were obtained by the CTM algorithm are
shown in figure 4.3. One can clearly see that the agreement of the
numerical results and the analytical results is very good. Even near
the phase transition, which occurs at the critical inverse temperature
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Figure 4.3: Magnetization per lattice site for the 2d classical Ising model on
the infinite lattice plotted against the inverse temperature β. The
exact solution is also shown as well as a plot of the relative error
between the calculation and the exact solution. The bond dimen-
sion of the environment in this calculation is χ = 40.
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Figure 4.4: Calculating the correlator between two sites by inserting N half-
column transfer matrices

βc = 1/2 log(1 +
√

2), the relative error is only around 1 %. Away from
the criticality the error decreases to ≈ 10−15, which means that our
numerical calculation is in very good agreement with the analytical re-
sults.
In addition to single site expectation values one also can calculate the
expectation value of e.g. the correlator

⟨f(s[⃗r])g(s[⃗r′])⟩ = 1
Z(β) ∑

{s}
f(s[⃗r])g(s[⃗r

′])e−βK({s}). (4.8)

Similar to the single site expectation value we can write it as a TN very
similar to Z(β), except for two tensors on the sites r⃗ and r⃗′ which are
replaced by the corresponding tensors b and b′. In this case we must
extend the environment to contract the tensor network by inserting N
more half-column transfer matrices and tensors a where N is the num-
ber of sites in between r⃗ and r⃗′ (see fig. 4.4). The decay of the spin-
spin correlator ⟨s[⃗r]s[⃗r′]⟩ with the distance |⃗r− r⃗′| at the critical point
βc = 1/2 log(1 +

√
2) can be seen in figure 4.5.
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Figure 4.5: The two point spin-spin correlator for the 2d quantum Ising model.
With the increase of the bond dimension of the environment the
correlation function converges against an algebraic decay. For a
bond dimension of χ = 70 the algebraic decay can be reproduced
up to a distance of about 1000 spins.
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The accuracy of the numerical results increases with the bond dimen-
sion of the calculated environment and the power-law decay can be
reproduced for distances up to 1000 spins.
Now we have shown that with our CTM algorithm we are able to calcu-
late the expectation value of a two dimensional lattice system with high
accuracy. The relative error of our calculation is only around ∼10−2 at
the critical point and decays down to ∼10−15 away from criticality.
Additionally, we are able to calculate two-point correlation functions
with good agreement with the analytic results up to a distance of 1000
spins. For the algebraic decay of the correlation function a higher bond
dimension (χ = 70) is needed than for accurate expectation values
(χ = 40). This is due to the fact that for larger long-range correlations
also higher bond dimensions are needed. But, since χ = 70 is still very
well accessible, one can conclude that the corner transfer matrix algo-
rithm is a very good tool to calculate expectation values and correlation
functions for two dimensional lattice systems.





5
T H E 2 D Q UA N T U M I S I NG M O D E L

Now that we have seen that the CTM algorithm works well for classical
lattice systems we will calculate the properties of a quantum lattice
system, strictly speaking the 2d quantum Ising model. In this case we
additionally have to approximate the ground state itself via the simple
update. From this approximated ground state we will then determine
several expectation values with the corner transfer matrix algorithm as
well as the HOTRG algorithm. In the end we will compare the obtained
results from both methods.

5.1 the model

The quantum Ising model is a simple and well studied example of in-
teracting spins on a lattice. The corresponding Hamiltonian is given
by

H = − ∑
<i,j>

σizσjz − h∑
i
σix (5.1)

where σz and σx are Pauli operators and h the strength of a external
transverse magnetic field. The eigenstates of σz are given by |↑⟩z and
|↓⟩z and the eigenstates of σx are given by |↑⟩x and |↓⟩x.
If h = 0, the ground state is given by a product state of either |↑⟩z or
|↓⟩z. Since the Hamiltonian has a Z2- symmetry, which means that it
is invariant under σz → −σz, the energy is invariant under |↑⟩z → |↓⟩z
and therefore the symmetric ground state |Ψsym⟩ should have a zero
magnetization in the z-direction.

mz = ⟨Ψsym|σz|Ψsym⟩ = ⟨Ψsym| − σz|Ψsym⟩
= − ⟨Ψsym|σz|Ψsym⟩
= 0

(5.2)

This symmetric state however is highly unstable in the sense that every
small perturbation sets the system off so that it flows into one of the
two states and the symmetry is spontaneously broken.
In the limit of very large h, this Z2-symmetry is restored since the
ground state is then given by the eigenstates of σx and the magneti-
zation mz = 0. Therefore we can use mz to distinguish between a state
which has a broken symmetry and one that still has this Z2-symmetry
and thus we call it an order parameter of the system.
In the Landau theory of phase transitions, the phases of a system can
be distinguished by checking whether the symmetry is conserved or
broken. This means that by calculating mz(h) we can provide the phase
diagram and also the phase transition point for this model.
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For the two dimensional case, with which we are concerned here, there
is no exact solution, but still it is a very well studied model by various
numerical techniques, with quantum Monte Carlo (QMC) [5], series
expansion (SE)[27] and exact diagonalization (ED) among them. The
results from QMC calculations are considered to be the most accurate
since it does not suffer from the sign problem for this model. These sim-
ulations estimate the phase transition point to be at hc ≈ 3.044. It is also
strongly suggested that the phase transition is of second order (as in
the one dimensional Ising model) with a critical exponent of β ≈ 0.327
[5].
In the following section we will compare our algorithms to these re-
sults to give a certain benchmark and justify that these algorithms can
be used to study the properties of 2d quantum systems.

5.2 results

We now want to determine the phase diagram of the 2d quantum Ising
model with the help of our tensor network methods. Therefore we cal-
culate the TN ground state of this model for different values of the
external magnetic field h.
Afterwards we calculate the expectation values for the energy, the trans-
verse magnetization and the longitudinal magnetization with the CTM-
algorithm and the HOTRG-algorithm.
The expectation values of the magnetization in the transverse and lon-
gitudinal direction, as well as the energy can be seen in figure 5.1. If we
have a closer look at the critical point for different bond dimensions
(fig. 5.2), it seems like there is a first-order phase transition at a critical
field h ≈ 3.24. This result is unexpected, since it is well established that
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Figure 5.1: The magnetization mx and mz and the ground state energy E0 of
the quantum Ising model plotted against the magnetic field.
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Figure 5.2: Magnetization close to the critical field for several bond dimen-
sions. The jump indicates a first order phase transition.

the 2d quantum Ising model has a second order phase transition at a
critical field hc ≈ 3.044 (QMC).
However if one looks closely at figure 5.2, one see that the jump de-
creases with increasing bond dimension. Therefore it seems like our
method is not able to encompass the large amount of entanglement at
this critical point with the bond dimensions we can access.
Since we are only using the simple update it is also possible that we

cannot get a second-order phase transition. The reason for this is that
we do not regard the influence of the environment in our algorithm
and therefore cannot get any sort of long-ranged entanglement. This,
however, is needed at the critical point since the correlation length di-
verges.
If we now have a look at the magnitude of this jump depending on the
bond dimension (fig. 5.3a), it seems like this jump does not vanish com-
pletely. However, if we plot it against 1/D (see fig. 5.3b) it seems well
possible that the jump vanishes at infinite bond dimension if the decay
does not follow an exponential function. We therefore cannot conclude
with certainty if a certain jump will remain at infinite bond dimension.
It is however quite possible that the simple update is not able to en-
compass the correct behaviour of second order phase transitions, due
to the reasons listed before.
Up to now we only used the CTM algorithm to calculate expectation
values, but as described in section 3.5.3.2 we have a second algorithm
to calculate expectation values. We will now compare these two algo-
rithms. We therefore calculate the magnetization again for a bond di-
mension of D = 3 and χ = 10 with our HOTRG and CTM algorithm
and plot both results in figure 5.4. We can see that the general differ-
ence between these two methods is rather small.
However it seems like the HOTRG algorithm gives slightly better re-
sults for the magnetization, especially shortly before the critical point.
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Figure 5.3: Magnitude of the jump in the apparent first order phase transition
of the 2d quantum Ising model depending of the bond dimension
of the PEPS. From the exponential fit we can conclude that the
jump within the magnetization does not vanish even at very large
bond dimensions. In (a) we plotted the jump directly against the
bond dimension, whereas in (b) we plotted against 1/D. From the
behaviour of the jump when plotted against 1/D it is not clear if the
jump will vanish for large bond dimensions or if a finite jump will
remain.
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Figure 5.4: Comparison of the CTM and the HOTRG algorithm. The differ-
ence between these two algorithms is very small but at some
points the HOTRG algorithm seems slightly better. All of the re-
sults above are with D = 3 and χ = 10.

To examine this deviation between the methods more closely we plot
the difference on the expectation values obtained by the CTM and the
HOTRG algorithm (see fig. 5.5). If we look at the difference of the mag-
netization values we can see that the maximum is at a magnetic field of
h = 3. For very small values of the magnetic field, or for values above
the critical value the difference vanishes.
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For the difference of the ground state energies, the general picture is
very similar except that the difference does not seem to vanish again
after the critical point.
From this we could conclude that the HOTRG algorithm gives better
expectation values and would be a better method to use. Unfortunately,
the HOTRG algorithm scales worse than the CTM algorithm in terms
of CPU and memory usage which restricts its usage to rather small
bond dimensions. Thus, we are mostly using the CTM algorithm to
calculate expectation values further on. We only use the HOTRG algo-
rithm in some cases where we have extremely large physical dimen-
sions, since the CPU and memory usage does not scale with this di-
mension.
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I N T RO D U C T I O N

Up to now every model we looked at was living on the square lattice.
However, in solid state physics not every system has this specific kind
of geometry. Many lattice systems, like crystals, have quite different ge-
ometries (e.g. a triangular or honeycomb lattice structure). This change
of the underlying structure can give rise to a lot of interesting physics
and new states of matter.

Figure 6.1: The lattice structure of the kagome lattice. It is a lattice which con-
sist of hexagons and triangles. It can also be seen as a triangular
lattice out of triangles by looking at e.g. the up-triangles.

One very interesting lattice is the so-called kagome lattice (figure 6.1) be-
cause it gives rise to large amounts of geometric frustration which yield
very strong quantum fluctuations. In physics, frustration refers to the
presence of competing forces that cannot be simultaneously satisfied.
One very simple example for this effect is an antiferromagnetic model,
in which all neighboring spins want to anti-align, on a triangular lat-
tice. In this case, it is not possible that all three spins within a triangle
anti-align at the same time. There will always be a site in which it is not
clear what value the spin will take (either up or down)(see figure 6.2).
The kagome lattice has even larger amounts of geometric frustration
than the triangular lattice, because it can be seen as a triangular lattice
with again triangles on each lattice site.
These large amounts of frustration make this model very interesting
since it is anticipated to give rise to new quantum states of matter, like
quantum spin liquids[1] or simplex solids[28].
The name kagome comes from the two Japanese words kago which
means basket and me meaning eyes. It refers to the pattern of a tra-
ditional Japanese woven bamboo basket (fig 6.3). The model which
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?

Figure 6.2: Graphical representation of the frustration within a triangular lat-
tice

Figure 6.3: Japanese Basket showing the typical woven pattern which is
known as the kagome lattice[41].

we want to study now on the kagome lattice is the antiferromagnetic
Heisenberg model, the basic model to describe the spin interaction
within antiferromagnets. The corresponding hamiltonian is given by

H = − ∑
<i,j>

S⃗iS⃗j. (6.1)

This model describes the interaction between neighboring spins on a
lattice and can be seen as the strong-coupling limit of the Hubbard
model of electrons. It has full SU(2)-symmetry and is used to describe
simple forms of magnetism, like anti- or ferromagnetism, on a funda-
mental level.
We will now investigate this model on the kagome lattice for different
spins, i.e. the spin-1/2, 1 and 3/2 case.
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T H E S P I N - 1/2 K AG O M E H E I S E N B E RG
A N T I F E R RO M AG N E T

In this chapter we are looking at the spin-1/2 case for the Heisenberg
model on the kagome lattice. This model has been subject to a lot of
discussion, since the nature of its ground state is still controversial af-
ter more than 20 years of research on this topic [14, 17, 21, 26, 30, 36,
50, 53, 58, 60, 62, 63]. The reason for this is that this model suffers from
the large amount of frustration of the underlying lattice. This makes it
very hard to tackle this problem analytically as well as numerically.
Thus many different methods were applied to this model, to get a better
understanding of the underlying physics. This variety of methods in-
clude MERA [17], coupled cluster methods [21], DMRG [62] and many
more. Monte Carlo methods are not able to tackle this problem due to
the sign problem [39] which restricts its usage from frustrated systems.
In this section we are using our PEPS approach and try to determine
the properties of the corresponding ground state.
One proposed ground state was the so called quantum spin liquid
(QSL), proposed by Anderson [1]. This is a very unusual state as far as
ground states are concerned. The reason for this is that ground states
usually break some symmetries of the corresponding Hamiltonian, like
the Z2 symmetry in the Ising case or gauge symmetry in supercon-
ductors. The quantum spin liquid on the other hand does not break
any symmetry of the parent Hamiltonian. The name comes from the
analogies to a classical liquid, in which the molecules form a dense
and highly correlated state which has no static order. Although we all
know this kind of phase from our every day life and it is very common
in the classical world, a spin liquid is a very exotic phase of matter and
has only been seen in very few materials [23]. It is also hard to find
numerically in realistic models.
Another ground state that was proposed is some sort of valence bond

crystal (VBC). In such a state two spins form a spin-0 singlet due to the
antiferromagnetic interaction. These two spins form then a so called
valence bond. The ground state then would consist of some ordering
in which every spin in the lattice is bound in such a singlet. The two
spins within such a valence bond are maximally entangled, but not
entangled with any other spin of the system. Such a VBC however is
quite different from a QSL, since it usually breaks a lattice symmetry
by choosing one specific arrangement of these valence bonds. Addi-
tionally it also lacks the long-range entanglement and topological or-
der which may be present within a QSL[1].
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Even though there is a clear difference between a VBC and a QSL it
is possible to construct a QSL from a VBC. A VBC usually breaks lat-
tice symmetries, since the arrangement of the bonds on the lattice is
not unique, and lacks long-ranged entanglement. If the valence bonds
are allowed to undergo quantum-mechanical fluctuations, the quan-
tum state will be a superposition of different partitionings of spins
into valence bonds. If the distribution of partitionings is broad, and
no specific order is preferred, the state can be regarded as a valence
bond liquid, rather than a valence bond solid or crystal. Such a state,
which is based on many different VBCs, is called a resonating valence
bond state(RVB) which was first proposed by Anderson[1]. One way to
obtain such an exotic state of matter is through very strong quantum
fluctuations which prohibit the system from choosing one specific va-
lence bond order, but favour a superposition of all orderings.
Which of these proposed ground states is the true one for the spin-1/2

Heisenberg model on the kagome lattice is not yet completely clear.
Some numerical studies favour a VBC and some tend towards a QSL,
but the lowest results which are obtained so far seem to favour a Z2-
QSL over the VBC[14].
The kagome lattice with spin-1/2 Heisenberg-like interaction also ap-
pears in nature within some mineral compounds, e.g. in the minerals
herbersmithite (ZnCu3(OH)6Cl2), volborthite (Cu3V2O7(OH)2 · 2 H2O) or
vesignieite (BaCu3(OH)6Cl2). The ground states of these materials are
now subject to a lot of studies to determine if it is a QSL or a VBC. At
the moment the experimental results seem to favour a Z2-QSL as the
ground state of these materials[23].

7.1 mapping to the square lattice

The PEPS-algorithms explained in chapter 3.5 are only valid on a square
lattice. This means that we either have to modify the algorithms to be
valid on this special lattice or perform a mapping between the kagome
and the square lattice.
Modifying the algorithms for the kagome lattice has proven to be quite
difficult and we therefore try to map it onto the square lattice.
This mapping is done via combining three lattice sites from the kagome
lattice into a single site of the square lattice. We therefore combine the
two sites from the bottom of each hexagon in the kagome lattice with
the leftmost site of the hexagon (see fig. 7.1). After this mapping each
link in the square lattice corresponds to two links in the kagome and
the physical dimension increases from 2 to 23. This means of course
that the computational complexity is now bigger compared to the usual
case with a lower physical dimension.
Starting from this approach we can formulate the corresponding Hamil-
tonian which describes the Heisenberg interaction on the kagome for
the square lattice and use this to calculate the ground state. This new
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Figure 7.1: Mapping scheme from the kagome to the square lattice. We com-
bine the three orange marked spins together and end up with a
square lattice. One single link in the square lattice corresponds
to two links in the kagome lattice. Since all nearest neighbours in
the kagome lattice are mapped to either one single site or nearest
neighbours in the square lattice, the interaction remains local.

Hamiltonian on the square lattice is still local with only nearest-neigh-
bour interactions. Additionally we choose a 2×2 unit cell on the square
lattice for our calculation. Hence we have a unit cell of six sites on the
kagome lattice and perform the simple update for the square lattice
to obtain the ground state via imaginary time evolution. From this we
calculate the expectation values, e.g. of the energy per lattice site, via
the CTM or HOTRG algorithm.
Of course this is not the only mapping scheme from the kagome onto
the square lattice. Another possible mapping would be combining all
up-triangles to one lattice site (see sec. A.3). This would however result
in a next-to-nearest neighbour interaction which is not easy to imple-
ment in the algorithms used in this thesis.

7.2 ground state energy

Before calculating the ground state energy for different bond dimen-
sions it is useful to check how large the bond dimension of the envi-
ronment should be chosen. We therefore plot the convergence of the
ground state energy depending of the bond dimension χ on the envi-
ronment (see fig. 7.2). The behaviour of E0 depending on χ is a priori
not clear. It is possible that the energy decreases continuously with in-
creasing χ, but also that convergence is reached and the value saturates.
Also from numerical instabilities it is possible that the energy increases
although a larger χ is used.
In our case, it is plainly visible that the environment converges very
fast already for small values of χ. In figure 7.2 the ground state energy
did already converge for χ = 10 for a bond dimension of the PEPS of
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Figure 7.2: Convergence of the ground state energy depending on the bond
dimension of the environment. The bond dimension of the corre-
sponding PEPS was D=3. To show the very fast convergence of
the ground state energy we perform an exponential fit. From the
scaling towards χ → ∞ we see that with χ = 15 we have already
almost completely converged.

D = 3. Since it is possible that for higher bond dimensions of the PEPS
a slightly higher χ is needed we choose χ = 15 for the calculations of
the ground state energies for all D.
The results of our calculations of the ground state energy for a con-
verged χ are only upper bounds for the true ground state energy. The
reason for this is that we only have an approximate ground state as
well as only an approximating method for calculating the expectation
value. Thus we are not able to give the exact ground state energy of
the model, but, due to the variational principle (see sec. 2.4), an upper
bound.
Now we calculate the ground state energies of this model for different
bond dimensions of our PEPS. The resulting energies can be seen in
table 7.1. We calculated the ground state energy with our CTM algo-
rithm as well as the HOTRG algorithm. The lowest ground state en-
ergy we find directly with our method is at a bond dimension of D = 9
with E0 = −0.434 47 via the CTM algorithm. This however was not the
calculation with the highest bond dimension since a calculation with
D = 10 was performed, too. For this large bond dimension we were not
able to calculate the expectation value with χ = 15 due to limited com-
putational resources. The environmental bond dimension was there-
fore reduced to χ = 10. This could be the reason why the energy of
this calculation is worse than for D = 9. The best ground state energy
we are able to obtain with our method is therefore E0 = −0.434 47 at
D = 9.
Of course this result is still biased due to a finite bond dimension. To get
rid of this effect we try to extrapolate from our data to D → ∞. Based
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PEPS D Env χ Energy

CTM

2 15 −0.419 49

3 15 −0.426 71

4 15 −0.429 96

5 15 −0.431 12

6 15 −0.433 19

8 15 −0.434 05

9 15 −0.434 47

10 10 −0.434 13

HOTRG

2 15 −0.416 40

3 15 −0.424 87

4 15 −0.430 84

5 15 −0.432 80

Table 7.1: Ground state energies of the spin-1/2 Heisenberg model on the
kagome lattice.

on the behavior of our date we assume an exponential behavior for E0

depending on D. We plot the energy against the bond dimension for
each of the used methods and try to perform a fit with an exponential
curve (fig. 7.3). The resulting fit for the values obtained via the CTM
algorithm does not improve the ground state energy by a big margin
for the scaling towards infinity. It seems like the ground state energy
has already converged and that we have already obtained the best pos-
sible state with our method.
In the case of the HOTRG algorithm it is noteworthy that for small val-
ues of D < 4 the results lie above the energies obtained by the CTM
algorithm, however for D ⩾ 4 the resulting energy is lower. The fit
therefore shows a steeper behavior within the scaling towards infin-
ity which ultimately results in a lower ground state energy for large
bond dimensions. This fit however is not as trustworthy since only four
points exist from which this behavior was extrapolated. It might be that
the tendency of the real data is not as strong as the fit suggests or even
that the decay does not follow an exponential curve. Nevertheless we
used an exponential curve for this fit since it decreases quicker than
any polynomial. Thus it should give an upper bound to the ground
state energy. However, since we only have access to very few points,
one should be careful with trusting this value.
It is not known why the HOTRG gives higher energies for small bond
dimensions but lower ones for large D.
Now we want to compare our results with other methods and their re-
sults. The ground state energies of all the different methods are shown
in figure 7.4. From this plot we can see that our ground state energy
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Figure 7.3: Scaling to an infinite bond dimension from the obtained data. We
fit the data obtained by the CTM and the HOTRG algorithm (see
table 7.1) separately with exponential curves of the form f(x) =
ae−bx + E0,∞. From this we extract the ground state energy at infi-
nite bond dimension. Additionally we plot the results against 1/D.
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Figure 7.4: Comparison of our results with other methods. Our upper bound
for the ground state energy is in very good comparison with the
energies obtained by other methods.

is well comparable with the results found by other methods. We are
below the energies found by MERA [17] and HVBC (honeycomb va-
lence bond crystal) [53] as well as an upper bound from a DMRG study
which was applied directly to an infinite 2d system [62]. However there
are also methods which yield lower ground state energies like an exten-
sive DMRG study with an intrinsic SU(2) spin symmetry and a bond
dimension of 16 000 [14].
Another interesting method is the projected entangled simplex state (PESS)
ansatz[60]. This is a similar ansatz to our PEPS approach. Such PESS
states are a representation of simplex solid states within the lattice.
Therefore all lattice sites which are part of a simplex are joined by an
entangled simplex tensor which describes the correlation of the particles
within each simplex. The size of such a simplex can be chosen depend-
ing on the corresponding system. If the simplex consists of N particles
the state is called a N-PESS. For N = 2 this state is equivalent to a nor-
mal PEPS. The lowest ground state energy by this method was found
by a 9-PESS which was the corresponding simplex state consisting of
three up-triangles with a bond dimension of 13. Unfortunately we are
not able to address bond dimensions of this sizes to give a closer com-
parison to these results. However for the bond dimensions that we can
access we are very close to the ground state energies which have been
found by this method. If we compare their results with the scaling of
the HOTRG results, it is worth mentioning that our ground state en-
ergy is even slightly lower.
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7.3 nature of the ground state

Even if our ground state energy is in good comparison with other meth-
ods, it is still an open question if our ground state has the form of a
quantum spin liquid. Not every method in this region found a spin
liquid at the ground state, some also find some sort of valence bond
crystal.
To check if the ground state really is a spin liquid and no other state,
one would have to look at every symmetry of the model and the lattice
and check that none of them are broken.
This, however, would be a very difficult task since there are many un-
derlying symmetries within the lattice and Hamiltonian itself. Since
we cannot check for every symmetry we will only calculate the energy
of each link within the lattice. If every link carries the same energy we
will conclude that the ground state is a possible QSL since it breaks no
obvious symmetry. This is however only an indicator and we cannot
say with absolute certainty that this state is in fact a QSL. In the case
that the energy of the different links varies we can say that the state
is no QSL but some sort of VBC with a certain structure which will be
defined by the pattern of the energies within the lattice.
To give at least a suggestion of the nature of the ground state we will
calculate the energy of each link within the lattice. We then plot the
results in a so-called bond strength map by matching a specific width of
the link between the lattice sites to a certain energy.
Since a VBC state has only short-ranged entanglement, it is expected
that for low bond dimensions such a state is favoured over a QSL with
long-ranged entanglement. This means that maybe a large bond dimen-
sion is needed to see a QSL in our ground state. Since we only have ac-
cess to rather small bond dimensions, it is possible that we cannot see
a QSL state. Thus, we will perform the calculation of the bond strength
map for different bond dimensions of the PEPS to see if the structure of
the energy changes depending on the bond dimension. From this we
will hopefully see an emergent spin liquid or a specific VBC-structure.
The resulting bond strength maps can be seen in figure 7.5. From the
different bond strength maps for the different bond dimensions it is
not easy to tell if a QSL will emerge at higher bond dimensions or not.
It is clearly visible that the energy distribution over the lattice becomes
smoother with a higher bond dimension and the difference between
the strongest and weakest bonds decreases.
However if one keeps track of the development of the bond strength

map depending on the bond dimension one notices that the differ-
ence between these maps is sometimes quite large and sometimes only
marginally. The difference between D = 2 and D = 4 or D = 6 and
D = 8 is very small as well as the development towards a more uni-
form picture of the energies. On the other hand the difference between
D = 4 and D = 6 is quite large and clearly visible. This behaviour can
also be seen in figure 7.6.
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Emin = −0.64903 Emax = 0.039561

(a) D = 2, columnar VBC

Emin = −0.62117 Emax = 0.015799

(b) D = 4, columnar VBC

Emin = −0.41726 Emax = −0.021571

(c) D = 6, stripe order VBC

Emin = −0.39442 Emax = −0.040784

(d) D = 8, stripe order VBC

Figure 7.5: Bond strength map of the KAFM for different bond dimensions
of the PEPS. At low bond dimensions a VBC-like structure arises
which diminishes, but not completely vanishes, if D increases.
From this it is hard to conclude if a QSL emerges at larger bond
dimensions.
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Figure 7.6: Energy difference between the strongest and weakest bond within
the bond strength map depending on the bond dimension. Due to
this sudden jump within ΔE it is not possible to give a prediction
about the behaviour at infinite bond dimension.

The reason for this behavior is completely unknown and it is therefore
extremely hard to give a prediction about the behaviour of the bond
strength map at higher bond dimensions. One possibility would be
that the PEPS with low bond dimension breaks the SU(2) symmetry
slightly and a larger D is needed to restore this symmetry. This could
lead to such a jump in the difference of the minimal and maximal en-
ergy. It is however easily possible that at a later point another abrupt
improvement takes place and the distribution of energy throughout
the lattice becomes uniform. This would suggest that our ground state
is a QSL. If the difference between the minimal and maximal energy
saturates at some point we have a valence bond crystal with a certain
order. Since it was not possible to go to higher bond dimensions we are
not able to give a conclusive result for the nature of the ground state
from our calculations.
The states we obtained with the bond dimensions accessible to us are
closer to a valence bond crystal with a columnar order than to a QSL.
It is also possible that this specific order within the bond strength map
is a consequence of the chosen mapping between the kagome and the
square lattice. Therefore different mappings might lead to different
structures and are maybe better suited to encompass a QSL.

7.4 kafm with a magnetic field

In addition to the ground state properties of the spin-1/2 Heisenberg
model we are also interested in the behavior under an external mag-
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Figure 7.7: Magnetization curve of the kagome Heisenberg antiferromagnet
with an external magnetic field. The plateau at a 1/3 magnetization
is clearly visible, as well as the jump to saturation at a field strength
of h = 3.

netic field. The interaction with an external magnetic field modifies
the Hamiltonian to

H = ∑
<i,j>

S⃗iS⃗j + ∑
i
h · Szi . (7.1)

We will now calculate the ground state for different values of h and
look at the corresponding magnetization of a triangle within the lat-
tice.
The behavior of the magnetization is still topic of recent discussions
and not completely understood. Recent studies show a highly possible
plateau at a 1/3- magnetization and a jump of the magnetization from
7/9 to 1 at the saturation field of h = 3 [7, 28, 40].
Some papers additionally suggest some more plateaus at a magneti-
zation of 1/9, 5/9 and 7/9 [40] which are however not found by every
method.
From the experimental side a full examination of this model is still to
be done. However it is noteworthy that a plateau close to 1/3 has re-
cently been found in two different spin-1/2 kagome compounds[43].
Due to this we want to calculate the magnetization behavior with our
PEPS approach and search for these plateaus.
From our calculations (see fig. 7.7) we can clearly see the plateau at a
magnetization of 1/3 which was found by many methods. Within this
plateau the “spin compressibility” (the derivative of the magnetization
with respect to the magnetic field) vanishes and hence this phase can
be seen as incompressible.
A similar plateau has been seen for the triangular lattice [38]. In this
case the corresponding ground state consists of a ↑↑↓-structure on the
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triangular plaquettes. This state is of course still infinitely degenerate
due to the infinite amount of tiling patterns on the triangular lattice.
Since on the triangular lattice the frustration has a similar role as on
the kagome lattice, the same mechanism should also be valid here. In
analogy the plateau of the KAFM should also consist of the ↑↑↓ tiling
structures. This should also be visible within the bond strength map
of the corresponding system, since the link between the anti-aligning
spins will have a much lower energy than the link between two parallel
spins. This means that a ↑↑↓-structure manifests in the bond strength
map by two strong and one weak link within each triangle.
If we plot the bond strength map for a ground state within this plateau
we find exactly the expected pattern of two strong bonds and one weak
bond within every triangle (figure 7.8). We additionally calculated the
expectation value of the magnetization on each site of a triangle sepa-
rately and displayed the results also in figure 7.8. We can see that the
expectation values are positive on two sites and negative on the last site.
This confirms the ↑↑↓-structure already suggested by the structure of
the bond strength map.
We therefore can verify the existence of the plateau and its nature with
our TN based methods. The size and position of this plateau are also
in very good agreement with all other methods.

Emin = −0.34269 Emax = 0.16606

0.7405

0.7353 −0.4731

Figure 7.8: Bond strength map at the magnetization plateau at a magnetic
field of h=1. The strength of the bonds in the lattice show a certain
order of stronger and weaker links. The weaker links are a sign
for neighbouring parallel spins whereas the stronger links suggest
anti-parallel spins. From this we can conclude that each triangle
consists of two up and one down spin. Additionally we calculated
the single site expectation value for each site within a triangle to
show that we find two spins with very similar spin with equal sign
and one spin with a different sign which verifies the expected ↑↑↓
structure.
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Additionally we also find the same saturation behavior at a magnetic
field of h = 3 as well as the same characteristic jump to this saturation
from a magnetization ofm = 7/9. All these features have been observed
by all previous methods. However we were not able to find the addi-
tional plateaus which are not present in all previous studies with differ-
ent methods. In a study by Hida[28] it was claimed that these plateaus
only exist in the case of some sort of distortion within the lattice. This
could be the reason why we do not see the effect since our calculation
is only valid for uniform infinite size two dimensional systems without
finite-size effects, unlike previous methods.
This however would mean that other methods like [7] or [40] would
have some sort of distortion of the model within their approach or suf-
fer from some finite-size effects.





8
T H E S P I N - 1 K AG O M E H E I S E N B E RG
A N T I F E R RO M AG N E T

Additionally to the study of the spin-1/2 KAFM (chap. 7) we had a
closer look at the spin-1 kagome Heisenberg antiferromagnet. In con-
trast to the spin-1/2 case, there are not as many studies about the corre-
sponding ground state of this model even though there are several can-
didates for such a system in nature. For example KV3Ge2O9 [24] and
BaNi3(OH)2(VO4)2 [19] are reported to be good candidates for spin-1
antiferromagnets with a kagome geometry.
Hida [29] proposed a hexagonal singlet solid (HSS) as the ground state,
based on an exact diagonalization calculation. This is a translationally
invariant state in which all spin-1’s can be seen as two spin-1/2’s pro-
jected into the spin-1 subspace and then all spin-1/2’s on a hexagon
within the lattice form a singlet.
Other methods claim that the ground state is some kind of simplex solid.
This means that there are geometric regions which are stronger con-
nected than others. In [8] it was proposed that the ground state under-
goes some kind of trimerization, which means that the up- and down-
triangles within the lattice carry different energies (fig. 8.1) and thus
theC2-symmetry between these triangles is broken. The resulting state
is known as a simplex solid. Such phases, which break point group sym-
metries, are named nematic and are characterized by fractional magne-
tization plateaus[49]. These plateaus are called incompressible since
the spin compressibility vanishes inside these plateaus.
If we add a magnetic field with on site interaction to the model and
see magnetization plateaus within the magnetization curve, we also
expect that the corresponding ground state at h = 0 shows this kind
of trimerized nematic phase.
Another ground state that was proposed is a resonating AKLT-loop (RAL)
state [33]. This spin liquid state is a superposition of all possible AKLT-
loops on the kagome lattice and seemed very promising because it had
a slightly lower energy than the HSS for small system-sizes. However,

Figure 8.1: Trimerization within the kagome lattice. The up and down trian-
gles carry different amount of energies and build a so called sim-
plex solid

59
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in the thermodynamic limit the resulting energy is much higher. Thus
this state has again been discarded as a very likely ground state of this
model.

8.1 ground state energy

For our calculations we choose the same approach as before, which
means that we use the iPEPS algorithm for the square lattice with the
simple update. We therefore perform the same mapping as described
in section 7.1 to get from the kagome onto the square lattice. This in-
creases the effective physical dimension of our model on the square
lattice to 33 = 27, which is already quite large.
We calculate the ground state again by performing an imaginary time
evolution with the simple update and display the resulting ground
state energies per lattice site for different bond dimensions in table 8.1.
The ground state energies were again calculated with the CTM as well
as the HOTRG algorithm. Since it is not expected that the convergence
of this model differs much from the spin-1/2 case we choose again the
same environmental bond dimension of χ = 15.

PEPS D Env χ Energy

CTM

2 15 −1.1623

3 15 −1.1773

4 15 −1.1841

5 15 −1.1869

6 10 −1.1885

7 5 −1.1891

HOTRG

2 15 −1.1609

3 15 −1.1780

4 15 −1.1872

5 15 −1.1875

Table 8.1: Ground state energies per lattice site for the spin 1 heisenberg
model on the kagome lattice.

From our obtained results we again try to determine the limit for large
bond dimensions. Hence we plot the ground state energy against the
bond dimension and perform an exponential fit as before (see sec. 7.2).
The fit with the resulting ground state energy for the large D scaling
can be seen in figure 8.2. From our data and the corresponding fit we
can see that we obtain a ground state energy which is E0 = −1.1893 if
we perform the scaling towards an infinite bond dimension of the data
obtained by the CTM algorithm. It is noteworthy that we only have ac-
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Figure 8.2: Scaling to an infinite bond dimension from the obtained ground
state energies. We perform the fit with an exponential curve
f(x) = ae−bx + E0,∞. We fit the results from the CTM and the
HOTRG algorithm separately and plot the result once against D
and once against 1/D
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Figure 8.3: Comparison of the results obtained by our method and the results
of other methods.

cess to much smaller bond dimensions compared to the spin-1/2 KAFM
model. The reason for this is that the physical dimension here is much
larger which increases the computational time and resources needed
for finding the ground state.
The fit of the ground state energies obtained by the HOTRG algorithm
gives a very similar limit of the energy for D → ∞. The resulting limit
of E0 = −1.1911 is slightly lower compared to the fit of the CTM-data,
however we have access to less data points to perform this fit and it is
therefore less trustworthy.
We now want to compare the values we obtained with our method to
other numerical methods and their ground state energies. To allow for
an easy comparison, we show all the ground state energies from the
different methods within one plot. The resulting graph can be seen in
figure 8.3. We can see that the energy found by our method is higher
than the results from other methods. All proposed ground states, like
the resonating AKLT-loops (RAL) [33] or simplex solid [8], provide a
lower ground state energy than our calculation. The best ground state
energy found so far by a simplex solid state lies at E0 = −1.412 which
is much lower than the E0 = −1.1893 we were able to obtain with the
CTM algorithm. Even the resulting energy from the rather optimistic
fit of the HOTRG results is still notably higher than the energies of all
the proposed ground states.
It is not known why our method fails to give a good estimate of the
ground state energy of this model, especially since the estimate for the
spin-1/2 KAFM was very good. It is of course possible that the behavior
of the ground state energy at higher bond dimensions is different from
the expected exponential behavior. It may be that the energy decrease
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is stronger above a certain bond dimensions and the real exponential
behavior starts in a later region which is not accessible to us. In addi-
tion to an insufficient bond dimension, it might be that the mapping
between the kagome and the square lattice is not optimal for the spin-1
KAFM. As explained before, it was proposed that the ground state ex-
hibits some sort of trimerization which results in a simplex solid state
and it is quite possible that the specific mapping chosen in this thesis
is not able to encompass such a trimerized state. A different mapping
(like in sec. A.3) might be a better ansatz to find such a state.
Another possibility is that this state is not accessible with the simple
update which was used in our calculations. If the correlation length
within the ground state is large, the simple update is not able to give
an accurate representation and the full update is needed for a better
description. Also the enlargement of the unit cell might help to obtain
better energies from our calculations.
The exact reason for the mismatch of our method and all the others
cannot be pinned down but it is most likely one or more than one of
the reasons listed above.

8.2 nature of the ground state

Now we try again to give a suggestion about the nature of the obtained
ground state. As stated previously, it was suggested in [8] that the
ground state forms a simplex solid which manifests in a trimerization.
A trimerized state is easily visible within the bond strength map since
the links in certain triangles will be stronger than in other triangles. We
will now check if we can reproduce this result with our method even
though we do not expect to see it within our ground state. The reason
for this is that the proposed energy of a simplex solid within the spin-1
KAFM has a much lower energy than the ground state energy which
was found with our method.
Nevertheless we calculated again the energy of each link within the
lattice and plotted the results in a bond strength map (see fig. 8.4). We
performed the calculations again for different values of the bond di-
mension of the model to see if some structure emerges with a larger D.
However within the bond strength maps of the bond dimensions that
are accessible with our method we are not able to see any specific pat-
tern emerging which would suggest a simplex solid state within the
lattice. The energies of the bonds within the triangles do not vary de-
pending on the fact that the triangle is an up- or down-triangle.
As stated before, these results are expected since our ground state en-
ergy differs much from the results obtained by simplex solid states.
From the structure we see within our data it is difficult to give a con-
clusive suggestion towards the nature of this ground state.
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Emin = −0.65428 Emax = −0.2873

(a) D = 2

Emin = −0.63884 Emax = −0.26106

(b) D = 4

Figure 8.4: Energy of each link in the kagome lattice. If one compares the min-
imal and maximal energy between the two bond strength maps it
is noteworthy that for D = 2 both are lower although the overall
energy is higher compared to D = 4. However for D = 4 more
bonds have a low energy which yields to a lower average.

8.3 spin-1 kafm with a magnetic field

Like in the spin-1/2 case we are also interested in the properties of this
model when we apply an external magnetic field to it. We therefore ex-
tend the model according to equation 7.1 and study the behavior of the
ground state for different values of the magnetic field. It was proposed
by different groups that the magnetization of this model shows again
some kind of plateau at a magnetization value of 1/3[28, 49].
It is not yet clear if we are able to observe this plateau with our ap-
proach since the energy of our ground state differs from the energies
obtained by other methods. Additionally it was claimed in [49] that
the fractional magnetization plateau is a property of the simplex solid
state which was found in [8, 29]. Since we also do not see such a sim-
plex solid it is very likely that we will also not able to see this plateau
within our calculations.
The calculated magnetization curve for this model can be seen in fig-
ure 8.5. By examining the magnetization curve it is obvious that no
kind of plateau exists at a fractional magnetization value within our
findings. The curve seems to be very smooth and without any anoma-
lies at any value of the external magnetic field h. As previously said,
this is not very surprising since we do not find the true ground state of
this model with our method.
We were only able to reproduce the value of the magnetic field at which
the magnetization saturates at h = 6.
It is not clear why our method fails to give us a ground state close to ex-
isting proposals and also the proposed magnetization curve. Possible
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Figure 8.5: Magnetization curve of the spin-1 Heisenberg antiferromagnet on
the kagome lattice. No plateau is visible within this curve and we
therefore cannot reproduce the results from [28, 49].

reasons, like the use of the simple update, the choice of the mapping
or the size of the unit cell have already been discussed.





9
T H E S P I N - 3/2 K AG O M E H E I S E N B E RG
A N T I F E R RO M AG N E T

The Heisenberg model on the kagome lattice is subject to many studies,
especially for small values of the spin (see chap. 7 and 8). For higher
spins the amount of theoretical studies decreases and only very few
exist in the case of s = 3/2. This model however is still very relevant
and interesting since it occurs naturally within several mineral com-
pounds. One of these is chromium-jarosite (KCr3(OH)6(SO4)2) which
has a perfect kagome structure and an antiferromagnetic interaction
with spin-3/2[44]. Moreover the large-spin limit is interesting for ob-
serving the quantum-classical transition.
Although these compounds exist, there are almost no theoretical stud-
ies concerning this model. There was only a higher spin examination
with a coupled cluster approach [21], which gave an estimate of the
ground state energy, an early spin-wave analysis [9], which suggested
that the ground state may support long-range magnetic order, and a
large-N expansion of the model [51], which suggests a quantum-dis-
ordered ground state. This means that there are two different ground
states supported by different theoretical approaches.
From the experimental side the question about the nature of the ground
state could not be answered in a final matter either. Several spin-3/2

antiferromagnetic kagome compounds, like SrCr9-xGa3+xO19 [56] and
Ba2Sn2Ga3ZnCr7O22 [22], seem to have no antiferromagnetic order in
their ground state, but undergo a spin-glass transition. However both
of these compounds have a slightly distorted kagome structure whereas
chromium-jarosite has no distortion and shows no spin-glass transi-
tion, but a long-range magnetic order. This means that there is evi-
dence for both disordered and magnetically ordered states, from both
the experimental, as well as the theoretical side. Thus the nature of the
true ground state is not yet known.
Due to this lack of theoretical and numerical results for the spin-3/2

KAFM we will now try to examine this model more closely with our
PEPS approach. We therefore perform again the same mapping be-
tween the kagome and the square lattice as before (see sec. 7.1). Hence
the physical dimension of the model on the square lattice is 43 = 64
which is very large. Since the simple update scales with d4

Phys, this large
physical dimension restricts us to very small bond dimensions of the
PEPS, due to the available computational resources.
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9.1 gound state energy

We again approximate the ground state of this model via the iTEBD
algorithm and calculate the expectation value of the corresponding
ground state energy with the HOTRG and the CTM algorithm. In this
case it is noteworthy that the HOTRG algorithm is a very useful method
to calculate expectation values, due to the fact that the algorithm does
not scale badly with the large physical dimension of this model.

PEPS D Env χ Energie

CTM

2 15 −2.7295

3 15 −2.7894

4 15 −2.7977

5 5 −2.8002

HOTRG

2 10 −2.7367

3 10 −2.7887

4 15 −2.8017

5 15 −2.8027

Table 9.1: Ground state energy of the spin-3/2 antiferromagnet on the kagome
lattice. Due to the large physical dimension of this model it was not
possible to go to higher bond dimensions than D = 5. In the case
of D = 5 it was only possible to choose χ = 5, because a larger χ
would exceed the available memory. One should also notice that
the obtained ground state in the case of D = 5 was not yet fully con-
verged at the time the expectation value was calculated. However
we included it anyways since it already gives us a lower ground
state energy.

The resulting expectation values can be seen in table 9.1 for all bond
dimensions which were accessible with the computational resources
available. Since there are not many other theoretical or numerical stud-
ies of this model we can not give a good comparison of our results
with other methods. The only published value was obtained by a cou-
pled cluster treatment [21] which is at E0 = −2.835. Additionally there
was a very recent unpublished calculation by Poilblanc & Picot with
the same method as in [49] which results in a ground state energy of
E0 = −2.783 .
Before we give a closer comparison with these results we perform a
scaling towards infinite bond dimension (see fig. 9.1). The problem
with the scaling is that we only have access to very few bond dimen-
sions and thus very little data to perform the exponential fits. It is there-
fore quite possible that the scaling towards an infinite bond dimension
does not encompass the correct behaviour. However, from the fit one
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Figure 9.1: Scaling towards infinite bond dimension for the spin-3/2 KAFM.
As in the spin-1/2 case we fit with f(x) = ae−bx + E0,∞ and extrap-
olate the energy to infinite bond dimension. We plot the energy
once depending on D and once as a function of 1/D.
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Figure 9.2: Comparison of the ground state energies of the spin-3/2 KAFM
obtained by different methods.

could suggest that the calculated energy has already converged, be-
cause the energy for the infinite bond dimension is very close to the
calculated one with finite D and the HOTRG algorithm. Even if this
behaviour is not correct, it is reasonable to assume that this energy is
reached at larger bond dimensions and we therefore suggest this as
our upper bound for the ground state energy. If we look at the scaling
from the energies obtained via the CTM algorithm one notices that the
extrapolated ground state energy is even above the value we obtain di-
rectly with D = 5.
Additionally, one should mention that the ground state at D = 5 that
was used to determine E0 was not yet fully converged. Anyhow, due to
the limited time available for this calculation, we decided to calculate
and include the energy of this ground state. Nevertheless, this PEPS
with D = 5 still gives lower results than the approximated ground
states with lower bond dimension. It is therefore likely that we can get
to even lower energies if we let the ground state fully converge.
The ground state energy we obtain from the scaling of the HOTRG
data is E0 = −2.806. To compare this result with the energies found by
other methods, we plot once more all values of E0 into one figure (see
fig. 9.2). We can see that our results are in good agreement with the
results obtained by Poilblanc & Picot and the ones from the coupled
cluster approach [21].

9.2 nature of the ground state

To get a closer examination of the nature of the ground state we plot
again the bond strength map (see fig. 9.3) for different values of the
bond dimension of our PEPS. We can see that there is no real structure
visible within these maps and also the pattern does not seem to change
much with increasing bond dimension. However we only have access
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Emin = −1.7885 Emax = −0.44139

(a) D = 2

Emin = −1.7099 Emax = −0.29239

(b) D = 4

Figure 9.3: Bond strength map of the ground state of the spin-3/2 antiferro-
magnet.

to two different bond dimensions and the structure may change with
a larger D.
It is very hard to determine the nature of the corresponding ground
state from only the bond strength map as available data. The state dis-
played here could be some disordered quantum state which could be
close to a spin-glass, but could also be part of a long-ranged magneti-
cally ordered structure. With our calculations we are not able to differ-
entiate between these two possible states.

9.3 spin-3/2 kafm with a magnetic field

A recent experimental study of chromium-jarosite[44] looked at the
magnetization process of this compound under an external magnetic
field. It was found that the magnetization exhibits a plateau at a mag-
netization value of m = 1/3 of the saturation value. Within this study
the magnetization curve was measured at different temperatures and
it was observed that the width of the plateau changes with the temper-
ature. In fact it decreases if the temperature is lowered. It was therefore
concluded that this plateau stabilizes due to thermal fluctuations by a
order-by-disorder mechanism [57] and it was not clear if this plateau
will still survive at T = 0 K. However within the study they suggested
that it will not be visible at T = 0 K.
From the theoretical side there is no study about the behaviour of this
model under a magnetic field. There was only one calculation based
on a classical model, which suggested that a ↑↑↓-structure stabilizes
below a certain temperature due to thermal fluctuations and that the
size of the region, in which this structure appears, gets narrower at
lower temperatures [64].
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We will therefore determine the influence of an external magnetic field
on the magnetization with our PEPS approach to give a numerical re-
sult regarding the existence of this plateau.
The transverse magnetic field modifies the Hamiltonian as before (see
eq. (7.1)) by an additional term proportional to the field strength and Sz.
Coming from this Hamiltonian we calculate the ground state for differ-
ent values of the magnetic field h and calculate the expectation value
of the magnetization. The resulting values can be seen in figure 9.4.
Our results show that the magnetization curve exhibits a small plateau
in the region of 2.8 < h < 3.4 with a magnetization value of m =
1/3 ·msat. This is therefore the first numerical evidence of the existence
of a magnetization plateau within the spin-3/2 KAFM at T = 0 K. Thus
we can conclude that this plateau may get wider due to stabilizing ef-
fects from thermal fluctuations, but it is intrinsically stable.
Additionally to this plateau at 1/3 magnetization we can see a second
plateau at m = 0 in the region of 0 < h < 1. This plateau has not been
observed within the experimental study of chromium-jarosite[44] and
we are the first one to see this plateau.
These plateaus can again be seen as incompressible since the derivative
of the magnetization with respect to the magnetic field (the spin com-
pressibility) vanishes within the plateaus. After obtaining these results,
these plateaus have also been verified independently by Poilblanc and
Picot. We therefore started a collaboration with them on the topic of
the spin-3/2 KAFM.
In figure 9.4 one can see that there are some data points missing in the
region 5.5 < h < 8.5. In this region we experienced some convergence
issues of our algorithm. The reason for this is unknown and it is possi-
ble that after more steps with the simple update we would have gotten
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Figure 9.4: Magnetization curve of the spin-3/2 antiferromagnet in a magnetic
field. It is clearly visible that we get a plateau with a 1/3 magneti-
zation. Some data 5.5 < h < 8.5 points are missing, because of a
lack of computational time to get a well-converged result.
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an approximated TN ground state even in this region. However, due to
the large physical dimension, the computational time needed for each
step was so large that we were not able to finish the calculation within
the given time frame.

Emin = −3.0637 Emax = 2.0958

−0.8343

0.9170 0.9270

Figure 9.5: Bond strength map of the spin-3/2 KAFM within the plateau of
the magnetization curve. We can see the expected structure of two
strong and one weak link within each triangle. This is characteris-
tic for the ↑↑↓-tiling structure. We additionally calculated the ex-
pectation value of the magnetization on each lattice site within
one triangle and normalized the values to the saturation magneti-
zation. From this we can see that we have two parallel spins with
equal sign and very similar magnetization and one spin antipar-
allel to them with different sign. This verifies the ↑↑↓-structure of
this plateau.

Now, that we concluded that the plateau exists at T = 0 K, we will
check if the ground state in this region has the predicted ↑↑↓-structure.
Hence we plot again the bond strength map of this model and look for
a structure with two strong and one weak bond within each triangle
(see sec. 7.4).
As we can see in figure 9.5 we find the expected structure. Additionally
we calculated the expectation value of the magnetization for each site
of a triangle. The resulting values can be seen in the inset in figure 9.5.
We can see that two of these expectation values have an equal positive
sign and are linked by a weak bond, which means that they are parallel.
The third spin has a negative sign and is linked with strong bonds to
the other two spins which means that this spin is antiparallel to the
other two. Thus we are able to verify the existence of a magnetization
plateau as well as its proposed classical ↑↑↓-structure.
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CO NC LU S I O N

In the first part of this thesis, we gave a general introduction to tensor
networks, especially PEPS, and numerical algorithms based on them.
In Part ii, we benchmarked our algorithms with the two-dimensional
Ising model on the square lattice, in the classical and in the quantum
case. From this benchmark we concluded that the used algorithm (the
so called simple update) is a good method to describe non-critical sys-
tems.
In Part iii we present our final results for the Heisenberg model on the
kagome lattice for different values of the spin.
In chapter 7 we start with the spin-1/2 antiferromagnet and calculate
the ground state energy, the magnetization under an external magnetic
field and try to give a suggestion about the nature of the ground state.
We find a ground state energy of E0 = −0.434 47, which is in very good
comparison with many other methods. This result is in fact amongst the
lowest truly two-dimensional results for this model.
There are currently two different states which are very good candi-
dates as ground states of this model, the valence bond crystal and the
quantum spin liquid. The lowest ground state energies are currently
obtained by a QSL, which is also supported from experimental results.
From the results obtained in this thesis it was not possible to conclude
which of these states is the true ground state, since we find a VBC at
the bond dimensions that are accessible to us, but it seems like a QSL
might emerge at higher bond dimensions.
Additionally, we studied the magnetization of this model, since it was
proposed that it exhibits one or more plateaus within the magnetiza-
tion curve as a function of an external field. We were able to verify the
existence of the plateau at 1/3 of the saturation magnetization. Other
proposed plateaus were not visible within our calculations.
Afterwards we studied the spin-1 Heisenberg antiferromagnet (chap-
ter 8) and also determined the ground state energy, its nature and the
magnetization process. For this model we were not able to reproduce
the results found by other methods. The ground state energy we ob-
tained was way above the best results found by a simplex solid. Also
the proposed trimerized ground state was not visible in our results,
neither was the proposed magnetization plateau at a magnetization of
m = 1/3. It is not clear why our approach fails in the case of the spin-1
model whereas it works very good for spin-1/2. It might be that this
model requires the use of the full update instead of the simple update,
a larger unit cell or simply a larger bond dimension.
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Finally, in chapter 9, we studied the spin-3/2 Heisenberg model on the
kagome lattice. This model has not been subject to a lot of previous
studies. We therefore try to give an estimate of the ground state en-
ergy and examine the magnetization process.
We find a ground state energy of E0 = −2.788. This result is in good
comparison to a coupled cluster study [21] and another unpublished
result. An experimental examination of this model suggested the ex-
istence of a 1/3 magnetization plateau at finite temperatures, which
seems to stabilize due to thermal fluctuations and it was concluded
that this plateau was not likely to survive at T = 0 K. From the theoret-
ical and numerical side there were no results on this process yet. Thus,
we tried to look for the existence of this plateau at T = 0 K and in fact
were able to see such a plateau within our results. We can therefore
conclude that this plateau is intrinsically stable and does not depend
on thermal fluctuations.
These recent results about the spin-3/2 KAFM led to a collaboration
with Poilblanc and Picot which will also lead to a paper within the fol-
lowing months.
To summarize all the results obtained in this thesis all important find-
ings are combined in table 10.1.

spin E0 D, χ method plateau

1/2

−0.434 47 9,15 CTM
−0.432 80 5,15 HOTRG 1/3

−0.434 48 ∞ scaling

1
−1.1891 7,5 CTM
−1.1875 5,15 HOTRG ×
−1.1896 ∞ scaling

3/2

−2.8002 5,5 CTM
−2.8027 5,15 HOTRG 0, 1/3

−2.8058 ∞ scaling

Table 10.1: Summary of all results obtained in this thesis

large-s limit

Now that we gathered the ground state energy for the Heisenberg
model on the kagome lattice for different spins we want to determine
the behaviour of the energy depending on the spin as a final and sum-
marizing task. From standard linear spin-wave theory it was concluded
that E0/s2 = −1 − 0.4412/s [25] and thus that in the classical limit
lims→∞ E0/s2 = −1.
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Figure 10.1: Behaviour of the ground state energy depending on the spin of
the Heisenberg model. We fit with the predicted behaviour of
f(s) = −1 − a/s, which was suggested by a linear spin-wave anal-
ysis of this model. We find that our results reproduce this be-
haviour except for the point at s = 1 which is known to be not
very accurate.

Hence we plot our resulting ground state energies divided by s2 and
fit with f(s) = −1 − a/s which is shown in figure 10.1.
From the resulting figure we can again see that our result of the ground
state energy of the spin-1 KAFM is not in a very good agreement with
the expected value. If we neglect this single point and only use the re-
maining two we can see that we can reproduce the 1/s-behaviour of
E0/s2 and also the corresponding prefactor of 1/s is with a = −0.3704 in
a similar region as the spin-wave result.





O U T LO O K

The main goal in the near future is to improve the results for the ground
state energies of the different models. Up to now we only used the sim-
ple update to determine the TN approximation of the ground state.
This method is very fast since it does not encompass the effects of the
environment, but also not very accurate. A more accurate algorithm is
the full update which is explained in the appendix A.1. This algorithm
finds the tensor with a certain bond dimension which represents the
absorption of a gate best, thus giving the best possible approximation.
In addition to the different algorithm we will try to perform the calcu-
lations with a larger unit cell. This would ease up the strong restriction
of translationally invariance and hence give lower ground state ener-
gies.
Also, rather than to change the algorithms used, a different mapping
between the kagome and the square lattice might lead to an improve-
ment of the results. It might be that different mappings favour differ-
ent kind of ground states, e.g. the combination of the up-triangles into
one single site might favour the existence of a trimerized states (see ap-
pendix A.3). Especially in the spin-1 case this might improve the results
by quite a margin since up to now we are not able to see any trimeriza-
tion. This mapping of combining triangles in the kagome lattice would
however result in a next-to-nearest neighbour interaction in the square
lattice. We therefore would have to modify the used algorithms accord-
ingly.
One other thing that could improve the results might be to choose dif-
ferent initial conditions. Within our code every calculation starts from
random tensors. It is however possible that a different starting tensor
leads to better final results. E.g. starting from a superposition of the
ground states of the Heisenberg model on the triangular lattice should
be a very good starting point, since the kagome lattice can be seen as a
triangular lattice of triangles.
One of the main problems during this project was of course the lim-
itation in terms of computational resources. One way to improve the
computational requirements and the results is by implementing sym-
metries. One possibility would be to implement the SU(2) orU(1) sym-
metry in the algorithms which would result in a much lower effective
physical dimension. This would enable us to perform calculations at
higher bond dimensions which could additionally improve the results.
This improvement has recently been shown in [34] with a code with
implemented SU(2)-symmetry.
Within the calculations of the different models not only the require-
ment of computational resources was very large, but also the needed
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time to perform the calculations. Because of that it would be very use-
ful to be able to calculate not only on CPUs but on GPUs. It is possible
to convert the algorithms so that they are able to run on GPUs which
would lead to a large speedup (the exact extend of the speedup is un-
known but we expect it to be of a factor of roughly 2). This task is also
set for the near future.



Part iv

A P P E N D I X





A
A P P E N D I X

a.1 the full update

The full update is the optimal way to find the new tensors with a spe-
cific bond dimension D, after applying a given two-body operator. It
is based on the minimization of the distance between the old and the
new state. The distance δ itself is given by

δ =
∣∣∣∣∣∣|Ψ⟩ − |Ψ̃⟩

∣∣∣∣∣∣2 = ⟨Ψ|Ψ⟩ − ⟨Ψ|Ψ̃⟩ − ⟨Ψ̃|Ψ⟩+ ⟨Ψ̃|Ψ̃⟩ (A.1)

where |Ψ⟩ is the original state where the two-body gate is applied onto
one single link and |Ψ̃⟩ is the new state where the gate is already ab-
sorbed. The bond dimension of the new state |Ψ̃⟩ however is the same
as in |Ψ⟩ (see fig. A.1). The distance itself can also be written in the
form of a TN diagram. This is shown in figure A.2. If we fix now every
tensor except one tensor A′ and look for the minimum of this distance
according to the variation of A′ we get

min
A′

∣∣∣∣∣∣|Ψ⟩ − |Ψ̃⟩
∣∣∣∣∣∣2 = min

A′

(
A⃗′†N A⃗′ − A⃗′†M⃗ − M⃗†A⃗′ + C

)
(A.2)

where A⃗′ are all components of the tensor A′ combined into one vector.
M⃗, N and C can be obtained as TN diagrams very easily by taking the
corresponding tensor A′ out of each of the four TN diagrams in figure
A.2.
If we want to find the tensor A′ which minimizes δ we must solve

∂

∂A⃗′†

(
A⃗′†N A⃗′ − A⃗′†M⃗ − M⃗†A⃗′ + C

)
= 0 (A.3)

and we end up with

N A⃗′ = M⃗. (A.4)

|Ψ⟩ =

A B

|Ψ̃⟩ =

A′ B′

Figure A.1: Starting points of the full update
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δ = − − +

A B

A∗ B∗

A B

A′∗ B′∗

A′ B′

A∗ B∗

A′ B′

A′∗ B′∗

Figure A.2: Distance δ written as a TN. The outer blue and turquoise are the
tensors which can also be seen in fig. A.1 and the darker ones cor-
respond to some effective environment for these tensors

This problem can easily be solved by e.g. inverting the matrix N .
Now that we have obtained the first tensor which minimizes the dis-
tance, we fix A′ and repeat every step for B′. In this way we iterate until
we find the optimal tensors with bond dimension D which minimize
the distance between |Ψ⟩ and |Ψ̃⟩. Thus we end up with the two ten-
sors which represent the absorption of the two-body gate best.
By performing a complete time step U(δt) on the complete state we get
a new TN state which now only consists of the new tensors A′ and B′.
To get to the ground state one has to repeat this process until both A′

and B′ have converged. To get faster convergence one usually does not
start from random tensors but first performs the simple update to get
tensors which are at least closer to the best approximated tensors than
the random ones.
It is possible to improve the algorithm in terms of the computational
cost by performing a SVD of the tensor, which should be updated.
We perform the SVD between the link on which the gate is applied
together with the physical link and all the other links which connect
the tensor to the environment. From the resulting three tensors we ab-
sorb the tensor belonging to the environment into the environment
and only update the remaining part. This scheme is more efficient in
terms of the needed computational resources.
There are also very efficient ways to update the environment after each
step by only absorbing the updated tensors once. This more efficient
scheme, which is based on the same minimization of the distance, is
described in more detail in [48].

a.2 ctm for a 2x2 unit cell

From section 3.5.3.1 we know how to calculate the environment for a
single tensor. Now we will extend this algorithm to a larger unit cell
which consists of two different tensors. We therefore need the envi-
ronment of a 2×2 unit cell and hence two more half-column and half-
row tensors. This means that the effective environment is now given
by G [⃗r] = {C1,T1a,T1b,C2, T2a,T2b,C3, T3a, T3b,C4,T4a,T4b}.
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Due to the increased amount of tensors within the environment we
need a second truncation scheme for the links between the adjoining
half-column or half-row tensors. For this truncation we use a similar
scheme for the single tensor unit cell. We therefore combine each cor-
ner transfer matrix with the adjoining half-column and half-row ten-
sor and the corresponding tensor of the unit cell into one large tensor
Q. From this tensor we calculate a new isometry as before via Q1Q†

1 +

Q4Q†
4 = W̃ΛWW̃†. This new isometry will then be used to truncate the

link between the half-row, or half-column tensors.
The complete scheme is displayed in the form of a TN in figure A.3
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Figure A.3: Tensor network diagram of the CTM algorithm. In (a) a x-move is
shown and (b) shows the renormalization scheme for the updated
tensors.

a.3 different mapping from the kagome to the square lat-
tice

As explained in section 7.1, we have chosen a very specific mapping
from the kagome to the square lattice. This mapping was chosen be-
cause the resulting interaction on the square lattice after the mapping
is still local. Without the restriction of remaining with only a nearest-
neighbour interaction on the square lattice it is possible to think of
other mappings. As discussed in section 8.1, it might be that different
mappings may favour different kind of ground states. We therefore
want to discuss a different kind of mapping which may give better re-
sults especially in the case of the spin-1 KAFM.
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Figure A.4: Alternate mapping from the kagome to the square lattice. All up-
triangles of the kagome are combined into one single site of the
square lattice. This however results in a next-to-nearest neighbour
interaction on the square lattice.

This mapping is done by combining all up-triangles of the kagome site
into one single site of the square lattice. It therefore results in a next-to-
nearest neighbour interaction on the square lattice (see fig. A.4) which
is why it was not used in this thesis.
This mapping however is more likely to give rise to a trimerized ground
state, as proposed for the ground state of the spin-1 KAFM. It is there-
fore expected that this kind of mapping would improve the results ob-
tained for the spin-1 antiferromagnet on the kagome lattice.
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